Spaces:
Running
Running
File size: 3,330 Bytes
a1c32b3 491a9c3 a1c32b3 e853e36 a1c32b3 e853e36 a1c32b3 c52d6b0 a1c32b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import re
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def process_document(image, *questions):
output = []
for question in questions:
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
output.append(processor.token2json(sequence))
return output
description = "Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
vqa_questions = {}
vqa_questions["ACCOUNT/BILL NUMBER"] = "What is the account or bill number?"
vqa_questions["TOTAL"] = "What is the total amount or total price?"
vqa_questions["ITEMS"] = "What are the items?"
vqa_questions["GST AMOUNT"] = "What is the GST or tax amount?"
vqa_questions["GST NO."] = "What is the GST number?"
vqa_questions[
"SELLER/BILLING DETAILS"
] = "What are the seller details or billing details"
vqa_questions["BILLING ADDRESS"] = "What is the billing address?"
demo = gr.Interface(
fn=process_document,
inputs=["image"] + [gr.components.Textbox(value=question) for question in vqa_questions.values()],
outputs="json",
title="Demo: Donut 🍩 for DocVQA",
description=description,
article=article,
enable_queue=True,
# examples=[["example_3.jpg", "What is the total?"], ["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]],
cache_examples=False)
demo.launch() |