Test-CHATBOT / app.py
annas4421's picture
Update app.py
fd911f4 verified
import os
from dotenv import load_dotenv
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, CSVLoader
import tempfile
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# Custom template to guide LLM model
custom_template = """
<s>[INST]You will start the conversation by greeting the user and introducing yourself as an Expert PDF documents analyze and assistant,
stating your availability for assistance. Your next step will depend on the user's response.
If the user expresses a need for assistance in pdf or document or txt or csv, you will ask them to describe their question.
However, if the user asks questions out of context from the knowledge base, you will immediately thank them and
say goodbye, ending the conversation. Remember to base your responses on the user's needs, providing accurate and
concise information regarding the data within the knowledge base. Your interactions should be professional and
focused, ensuring the user's queries are addressed efficiently without deviating from the set flows.
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]
"""
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
prompt_template = """<s>[INST]
You will answer from the provided files stored in knowledge base
CONTEXT: {context}
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]
"""
prompt = PromptTemplate(template=prompt_template,
input_variables=['context', 'question', 'chat_history'])
# Function to extract text from documents
def get_document_text(uploaded_files):
documents = []
for uploaded_file in uploaded_files:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
# Load document based on its type
if uploaded_file.name.endswith(".pdf"):
loader = PyPDFLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".docx") or uploaded_file.name.endswith(".doc"):
loader = Docx2txtLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".txt"):
loader = TextLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".csv"):
loader = CSVLoader(temp_file_path)
documents.extend(loader.load())
return documents
# Split text into chunks
def get_chunks(documents):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=600, chunk_overlap=200, length_function=len)
chunks = [chunk for doc in documents for chunk in text_splitter.split_text(doc.page_content)]
return chunks
# Create vectorstore
def get_vectorstore(chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vectorstore
# Create a conversational chain
def get_conversationchain(vectorstore):
llm = ChatOpenAI(temperature=0.1, model_name='gpt-4o-mini')
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(search_type="similarity",search_kwargs={"k": 10}),
condense_question_prompt=CUSTOM_QUESTION_PROMPT,
memory=memory,
combine_docs_chain_kwargs={'prompt': prompt}
)
return conversation_chain
# Handle user questions and update chat history
def handle_question(question):
if not st.session_state.conversation:
st.warning("Please process your documents first.")
return
response = st.session_state.conversation({'question': question})
st.session_state.chat_history = response['chat_history']
for i, msg in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.markdown(f"**You:** {msg.content}")
else:
st.markdown(f"**Bot:** {msg.content}")
def handle_question(question):
if not st.session_state.conversation:
st.warning("Please process your documents first.")
return
# Get the response from the conversation chain
response = st.session_state.conversation({'question': question})
# Update chat history
st.session_state.chat_history = response['chat_history']
# Display chat history
for i, msg in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.markdown(f"**You:** {msg.content}")
else:
st.markdown(f"**Bot:** {msg.content}")
# Main Streamlit app
def main():
st.set_page_config(page_title="Chat with Documents", page_icon="πŸ“š")
st.title("πŸ“š Chat with Your Documents")
st.sidebar.title("Upload Your Files")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# File uploader
uploaded_files = st.sidebar.file_uploader("Upload your files (PDF, DOCX, TXT, CSV):", accept_multiple_files=True)
# Process button
if st.sidebar.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents..."):
# Extract text and create conversation chain
raw_documents = get_document_text(uploaded_files)
text_chunks = get_chunks(raw_documents)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversationchain(vectorstore)
st.success("Documents processed successfully!")
else:
st.warning("Please upload at least one document.")
# User input
question = st.text_input("Ask a question about the uploaded documents:")
if question:
handle_question(question)
if __name__ == '__main__':
main()