junhyouk lee commited on
Commit
b8b70ac
·
1 Parent(s): b8336df
Files changed (17) hide show
  1. README.md +4 -4
  2. analysis.py +141 -0
  3. app.py +141 -0
  4. attentions.py +472 -0
  5. commons.py +181 -0
  6. configs/config_en.yaml +68 -0
  7. logs/pits_vctk_AD_3000.pth +3 -0
  8. models.py +1383 -0
  9. modules.py +425 -0
  10. pqmf.py +136 -0
  11. text/__init__.py +68 -0
  12. text/cleaners.py +89 -0
  13. text/numbers.py +71 -0
  14. text/symbols.py +38 -0
  15. transforms.py +199 -0
  16. utils.py +309 -0
  17. yin.py +166 -0
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Pits
3
  emoji: 🌖
4
  colorFrom: purple
5
  colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 3.20.0
8
  app_file: app.py
9
- pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: PITS
3
  emoji: 🌖
4
  colorFrom: purple
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 3.20.1
8
  app_file: app.py
9
+ pinned: true
10
  license: mit
11
  ---
12
 
13
+ Official Demo for PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS
analysis.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/dhchoi99/NANSY
2
+ # We have modified the implementation of dhchoi99 to be fully differentiable.
3
+ import math
4
+ import torch
5
+ from yin import *
6
+
7
+
8
+ class Pitch(torch.nn.Module):
9
+
10
+ def __init__(
11
+ self,
12
+ sr=22050,
13
+ w_step=256,
14
+ W=2048,
15
+ tau_max=2048,
16
+ midi_start=5,
17
+ midi_end=85,
18
+ octave_range=12):
19
+ super(Pitch, self).__init__()
20
+ self.sr = sr
21
+ self.w_step = w_step
22
+ self.W = W
23
+ self.tau_max = tau_max
24
+ self.unfold = torch.nn.Unfold((1, self.W),
25
+ 1,
26
+ 0,
27
+ stride=(1, self.w_step))
28
+ midis = list(range(midi_start, midi_end))
29
+ self.len_midis = len(midis)
30
+ c_ms = torch.tensor([self.midi_to_lag(m, octave_range) for m in midis])
31
+ self.register_buffer('c_ms', c_ms)
32
+ self.register_buffer('c_ms_ceil', torch.ceil(self.c_ms).long())
33
+ self.register_buffer('c_ms_floor', torch.floor(self.c_ms).long())
34
+
35
+ def midi_to_lag(self, m: int, octave_range: float = 12):
36
+ """converts midi-to-lag, eq. (4)
37
+
38
+ Args:
39
+ m: midi
40
+ sr: sample_rate
41
+ octave_range:
42
+
43
+ Returns:
44
+ lag: time lag(tau, c(m)) calculated from midi, eq. (4)
45
+
46
+ """
47
+ f = 440 * math.pow(2, (m - 69) / octave_range)
48
+ lag = self.sr / f
49
+ return lag
50
+
51
+ def yingram_from_cmndf(self, cmndfs: torch.Tensor) -> torch.Tensor:
52
+ """ yingram calculator from cMNDFs(cumulative Mean Normalized Difference Functions)
53
+
54
+ Args:
55
+ cmndfs: torch.Tensor
56
+ calculated cumulative mean normalized difference function
57
+ for details, see models/yin.py or eq. (1) and (2)
58
+ ms: list of midi(int)
59
+ sr: sampling rate
60
+
61
+ Returns:
62
+ y:
63
+ calculated batch yingram
64
+
65
+
66
+ """
67
+ #c_ms = np.asarray([Pitch.midi_to_lag(m, sr) for m in ms])
68
+ #c_ms = torch.from_numpy(c_ms).to(cmndfs.device)
69
+
70
+ y = (cmndfs[:, self.c_ms_ceil] -
71
+ cmndfs[:, self.c_ms_floor]) / (self.c_ms_ceil - self.c_ms_floor).unsqueeze(0) * (
72
+ self.c_ms - self.c_ms_floor).unsqueeze(0) + cmndfs[:, self.c_ms_floor]
73
+ return y
74
+
75
+ def yingram(self, x: torch.Tensor):
76
+ """calculates yingram from raw audio (multi segment)
77
+
78
+ Args:
79
+ x: raw audio, torch.Tensor of shape (t)
80
+ W: yingram Window Size
81
+ tau_max:
82
+ sr: sampling rate
83
+ w_step: yingram bin step size
84
+
85
+ Returns:
86
+ yingram: yingram. torch.Tensor of shape (80 x t')
87
+
88
+ """
89
+ # x.shape: t -> B,T, B,T = x.shape
90
+ B, T = x.shape
91
+ w_len = self.W
92
+
93
+
94
+ frames = self.unfold(x.view(B, 1, 1, T))
95
+ frames = frames.permute(0, 2,
96
+ 1).contiguous().view(-1,
97
+ self.W) #[B* frames, W]
98
+ # If not using gpu, or torch not compatible, implemented numpy batch function is still fine
99
+ dfs = differenceFunctionTorch(frames, frames.shape[-1], self.tau_max)
100
+ cmndfs = cumulativeMeanNormalizedDifferenceFunctionTorch(
101
+ dfs, self.tau_max)
102
+ yingram = self.yingram_from_cmndf(cmndfs) #[B*frames,F]
103
+ yingram = yingram.view(B, -1, self.len_midis).permute(0, 2,
104
+ 1) # [B,F,T]
105
+ return yingram
106
+
107
+ def crop_scope(self, x, yin_start,
108
+ scope_shift): # x: tensor [B,C,T] #scope_shift: tensor [B]
109
+ return torch.stack([
110
+ x[i, yin_start + scope_shift[i]:yin_start + self.yin_scope +
111
+ scope_shift[i], :] for i in range(x.shape[0])
112
+ ],
113
+ dim=0)
114
+
115
+
116
+ if __name__ == '__main__':
117
+ import torch
118
+ import librosa as rosa
119
+ import matplotlib.pyplot as plt
120
+ wav = torch.tensor(rosa.load('LJ001-0002.wav', sr=22050,
121
+ mono=True)[0]).unsqueeze(0)
122
+ # wav = torch.randn(1,40965)
123
+
124
+ wav = torch.nn.functional.pad(wav, (0, (-wav.shape[1]) % 256))
125
+ # wav = wav[#:,:8096]
126
+ print(wav.shape)
127
+ pitch = Pitch()
128
+
129
+ with torch.no_grad():
130
+ ps = pitch.yingram(torch.nn.functional.pad(wav, (1024, 1024)))
131
+ ps = torch.nn.functional.pad(ps, (0, 0, 8, 8), mode='replicate')
132
+ print(ps.shape)
133
+ spec = torch.stft(wav, 1024, 256, return_complex=False)
134
+ print(spec.shape)
135
+ plt.subplot(2, 1, 1)
136
+ plt.pcolor(ps[0].numpy(), cmap='magma')
137
+ plt.colorbar()
138
+ plt.subplot(2, 1, 2)
139
+ plt.pcolor(ps[0][15:65, :].numpy(), cmap='magma')
140
+ plt.colorbar()
141
+ plt.show()
app.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import argparse
3
+ import torch
4
+ import commons
5
+ import utils
6
+ from models import (
7
+ SynthesizerTrn, )
8
+
9
+ from text.symbols import symbol_len, lang_to_dict
10
+
11
+ # we use Kyubyong/g2p for demo instead of our internal g2p
12
+ # https://github.com/Kyubyong/g2p
13
+ from g2p_en import G2p
14
+ import re
15
+
16
+ _symbol_to_id = lang_to_dict("en_US")
17
+
18
+ class GradioApp:
19
+
20
+ def __init__(self, args):
21
+ self.hps = utils.get_hparams_from_file(args.config)
22
+ self.device = "cpu"
23
+ self.net_g = SynthesizerTrn(symbol_len(self.hps.data.languages),
24
+ self.hps.data.filter_length // 2 + 1,
25
+ self.hps.train.segment_size //
26
+ self.hps.data.hop_length,
27
+ midi_start=-5,
28
+ midi_end=75,
29
+ octave_range=24,
30
+ n_speakers=len(self.hps.data.speakers),
31
+ **self.hps.model).to(self.device)
32
+ _ = self.net_g.eval()
33
+ _ = utils.load_checkpoint(args.checkpoint_path, model_g=self.net_g)
34
+ self.g2p = G2p()
35
+ self.interface = self._gradio_interface()
36
+
37
+ def get_phoneme(self, text):
38
+ phones = [re.sub("[0-9]", "", p) for p in self.g2p(text)]
39
+ tone = [0 for p in phones]
40
+ if self.hps.data.add_blank:
41
+ text_norm = [_symbol_to_id[symbol] for symbol in phones]
42
+ text_norm = commons.intersperse(text_norm, 0)
43
+ tone = commons.intersperse(tone, 0)
44
+ else:
45
+ text_norm = phones
46
+ text_norm = torch.LongTensor(text_norm)
47
+ tone = torch.LongTensor(tone)
48
+ return text_norm, tone, phones
49
+
50
+ @torch.no_grad()
51
+ def inference(self, text, speaker_id_val, seed, scope_shift, duration):
52
+ torch.manual_seed(seed)
53
+ text_norm, tone, phones = self.get_phoneme(text)
54
+ x_tst = text_norm.to(self.device).unsqueeze(0)
55
+ t_tst = tone.to(self.device).unsqueeze(0)
56
+ x_tst_lengths = torch.LongTensor([text_norm.size(0)]).to(self.device)
57
+ speaker_id = torch.LongTensor([speaker_id_val]).to(self.device)
58
+ decoder_inputs,*_ = self.net_g.infer_pre_decoder(
59
+ x_tst,
60
+ t_tst,
61
+ x_tst_lengths,
62
+ sid=speaker_id,
63
+ noise_scale=0.667,
64
+ noise_scale_w=0.8,
65
+ length_scale=duration,
66
+ scope_shift=scope_shift)
67
+ audio = self.net_g.infer_decode_chunk(
68
+ decoder_inputs, sid=speaker_id)[0, 0].data.cpu().float().numpy()
69
+ del decoder_inputs,
70
+ return phones, (self.hps.data.sampling_rate, audio)
71
+
72
+
73
+ def _gradio_interface(self):
74
+ title = "PITS Demo"
75
+ inputs = [
76
+ gr.Textbox(label="Text (150 words limitation)",
77
+ value="This is demo page.",
78
+ elem_id="tts-input"),
79
+ gr.Dropdown(list(self.hps.data.speakers),
80
+ value="p225",
81
+ label="Speaker Identity",
82
+ type="index"),
83
+ gr.Slider(0, 65536, step=1, label="random seed"),
84
+ gr.Slider(-15, 15, value=0, step=1, label="scope-shift"),
85
+ gr.Slider(0.5, 2., value=1., step=0.1,
86
+ label="duration multiplier"),
87
+ ]
88
+ outputs = [
89
+ gr.Textbox(label="Phonemes"),
90
+ gr.Audio(type="numpy", label="Output audio")
91
+ ]
92
+ description = "Welcome to the Gradio demo for PITS: Variational Pitch Inference without Fundamental Frequency for End-to-End Pitch-controllable TTS.\n In this demo, we utilize an open-source G2P library (g2p_en) with stress removing, instead of our internal G2P.\n You can fix the latent z by controlling random seed.\n You can shift the pitch scope, but please note that this is opposite to pitch-shift. In addition, it is cropped from fixed z so please check pitch-controllability by comparing with normal synthesis.\n Thank you for trying out our PITS demo!"
93
+ article = "Github:https://github.com/anonymous-pits/pits \n Our current preprint contains several errors. Please wait for next update."
94
+ examples = [["This is a demo page of the PITS."],["I love hugging face."]]
95
+ return gr.Interface(
96
+ fn=self.inference,
97
+ inputs=inputs,
98
+ outputs=outputs,
99
+ title=title,
100
+ description=description,
101
+ article=article,
102
+ examples=examples,
103
+ )
104
+
105
+ def launch(self):
106
+ return self.interface.launch(share=True)
107
+
108
+
109
+ def parsearg():
110
+ parser = argparse.ArgumentParser()
111
+ parser.add_argument('-c',
112
+ '--config',
113
+ type=str,
114
+ default="./configs/config_en.yaml",
115
+ help='Path to configuration file')
116
+ parser.add_argument('-m',
117
+ '--model',
118
+ type=str,
119
+ default='PITS',
120
+ help='Model name')
121
+ parser.add_argument('-r',
122
+ '--checkpoint_path',
123
+ type=str,
124
+ default='./logs/pits_vctk_AD_3000.pth',
125
+ help='Path to checkpoint for resume')
126
+ parser.add_argument('-f',
127
+ '--force_resume',
128
+ type=str,
129
+ help='Path to checkpoint for force resume')
130
+ parser.add_argument('-d',
131
+ '--dir',
132
+ type=str,
133
+ default='/DATA/audio/pits_samples',
134
+ help='root dir')
135
+ args = parser.parse_args()
136
+ return args
137
+
138
+ if __name__ == "__main__":
139
+ args = parsearg()
140
+ app = GradioApp(args)
141
+ app.launch()
attentions.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ from modules import LayerNorm
9
+
10
+
11
+ class Encoder(nn.Module):
12
+ def __init__(
13
+ self,
14
+ hidden_channels,
15
+ filter_channels,
16
+ n_heads,
17
+ n_layers,
18
+ kernel_size=1,
19
+ p_dropout=0.,
20
+ window_size=4,
21
+ **kwargs
22
+ ):
23
+ super().__init__()
24
+ self.hidden_channels = hidden_channels
25
+ self.filter_channels = filter_channels
26
+ self.n_heads = n_heads
27
+ self.n_layers = n_layers
28
+ self.kernel_size = kernel_size
29
+ self.p_dropout = p_dropout
30
+ self.window_size = window_size
31
+
32
+ self.drop = nn.Dropout(p_dropout)
33
+ self.attn_layers = nn.ModuleList()
34
+ self.norm_layers_1 = nn.ModuleList()
35
+ self.ffn_layers = nn.ModuleList()
36
+ self.norm_layers_2 = nn.ModuleList()
37
+ for i in range(self.n_layers):
38
+ self.attn_layers.append(
39
+ MultiHeadAttention(
40
+ hidden_channels,
41
+ hidden_channels,
42
+ n_heads,
43
+ p_dropout=p_dropout,
44
+ window_size=window_size
45
+ )
46
+ )
47
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
48
+ self.ffn_layers.append(
49
+ FFN(
50
+ hidden_channels,
51
+ hidden_channels,
52
+ filter_channels,
53
+ kernel_size,
54
+ p_dropout=p_dropout
55
+ )
56
+ )
57
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
58
+
59
+ def forward(self, x, x_mask):
60
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
61
+ x = x * x_mask
62
+ for i in range(self.n_layers):
63
+ y = self.attn_layers[i](x, x, attn_mask)
64
+ y = self.drop(y)
65
+ x = self.norm_layers_1[i](x + y)
66
+
67
+ y = self.ffn_layers[i](x, x_mask)
68
+ y = self.drop(y)
69
+ x = self.norm_layers_2[i](x + y)
70
+ x = x * x_mask
71
+ return x
72
+
73
+
74
+ class Decoder(nn.Module):
75
+ def __init__(
76
+ self,
77
+ hidden_channels,
78
+ filter_channels,
79
+ n_heads,
80
+ n_layers,
81
+ kernel_size=1,
82
+ p_dropout=0.,
83
+ proximal_bias=False,
84
+ proximal_init=True,
85
+ **kwargs
86
+ ):
87
+ super().__init__()
88
+ self.hidden_channels = hidden_channels
89
+ self.filter_channels = filter_channels
90
+ self.n_heads = n_heads
91
+ self.n_layers = n_layers
92
+ self.kernel_size = kernel_size
93
+ self.p_dropout = p_dropout
94
+ self.proximal_bias = proximal_bias
95
+ self.proximal_init = proximal_init
96
+
97
+ self.drop = nn.Dropout(p_dropout)
98
+ self.self_attn_layers = nn.ModuleList()
99
+ self.norm_layers_0 = nn.ModuleList()
100
+ self.encdec_attn_layers = nn.ModuleList()
101
+ self.norm_layers_1 = nn.ModuleList()
102
+ self.ffn_layers = nn.ModuleList()
103
+ self.norm_layers_2 = nn.ModuleList()
104
+ for i in range(self.n_layers):
105
+ self.self_attn_layers.append(
106
+ MultiHeadAttention(
107
+ hidden_channels,
108
+ hidden_channels,
109
+ n_heads,
110
+ p_dropout=p_dropout,
111
+ proximal_bias=proximal_bias,
112
+ proximal_init=proximal_init
113
+ )
114
+ )
115
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
116
+ self.encdec_attn_layers.append(
117
+ MultiHeadAttention(
118
+ hidden_channels,
119
+ hidden_channels,
120
+ n_heads,
121
+ p_dropout=p_dropout
122
+ )
123
+ )
124
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
125
+ self.ffn_layers.append(
126
+ FFN(
127
+ hidden_channels,
128
+ hidden_channels,
129
+ filter_channels,
130
+ kernel_size,
131
+ p_dropout=p_dropout,
132
+ causal=True
133
+ )
134
+ )
135
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
136
+
137
+ def forward(self, x, x_mask, h, h_mask):
138
+ """
139
+ x: decoder input
140
+ h: encoder output
141
+ """
142
+ self_attn_mask = commons.subsequent_mask(
143
+ x_mask.size(2)
144
+ ).to(device=x.device, dtype=x.dtype)
145
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
146
+ x = x * x_mask
147
+ for i in range(self.n_layers):
148
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
149
+ y = self.drop(y)
150
+ x = self.norm_layers_0[i](x + y)
151
+
152
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
153
+ y = self.drop(y)
154
+ x = self.norm_layers_1[i](x + y)
155
+
156
+ y = self.ffn_layers[i](x, x_mask)
157
+ y = self.drop(y)
158
+ x = self.norm_layers_2[i](x + y)
159
+ x = x * x_mask
160
+ return x
161
+
162
+
163
+ class MultiHeadAttention(nn.Module):
164
+ def __init__(
165
+ self,
166
+ channels,
167
+ out_channels,
168
+ n_heads,
169
+ p_dropout=0.,
170
+ window_size=None,
171
+ heads_share=True,
172
+ block_length=None,
173
+ proximal_bias=False,
174
+ proximal_init=False
175
+ ):
176
+ super().__init__()
177
+ assert channels % n_heads == 0
178
+
179
+ self.channels = channels
180
+ self.out_channels = out_channels
181
+ self.n_heads = n_heads
182
+ self.p_dropout = p_dropout
183
+ self.window_size = window_size
184
+ self.heads_share = heads_share
185
+ self.block_length = block_length
186
+ self.proximal_bias = proximal_bias
187
+ self.proximal_init = proximal_init
188
+ self.attn = None
189
+
190
+ self.k_channels = channels // n_heads
191
+ self.conv_q = nn.Conv1d(channels, channels, 1)
192
+ self.conv_k = nn.Conv1d(channels, channels, 1)
193
+ self.conv_v = nn.Conv1d(channels, channels, 1)
194
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
195
+ self.drop = nn.Dropout(p_dropout)
196
+
197
+ if window_size is not None:
198
+ n_heads_rel = 1 if heads_share else n_heads
199
+ rel_stddev = self.k_channels**-0.5
200
+ self.emb_rel_k = nn.Parameter(torch.randn(
201
+ n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
202
+ self.emb_rel_v = nn.Parameter(torch.randn(
203
+ n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
204
+
205
+ nn.init.xavier_uniform_(self.conv_q.weight)
206
+ nn.init.xavier_uniform_(self.conv_k.weight)
207
+ nn.init.xavier_uniform_(self.conv_v.weight)
208
+ if proximal_init:
209
+ with torch.no_grad():
210
+ self.conv_k.weight.copy_(self.conv_q.weight)
211
+ self.conv_k.bias.copy_(self.conv_q.bias)
212
+
213
+ def forward(self, x, c, attn_mask=None):
214
+ q = self.conv_q(x)
215
+ k = self.conv_k(c)
216
+ v = self.conv_v(c)
217
+
218
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
219
+
220
+ x = self.conv_o(x)
221
+ return x
222
+
223
+ def attention(self, query, key, value, mask=None):
224
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
225
+ b, d, t_s, t_t = (*key.size(), query.size(2))
226
+ #query = query.view(
227
+ # b,
228
+ # self.n_heads,
229
+ # self.k_channels,
230
+ # t_t
231
+ #).transpose(2, 3) #[b,h,t_t,c], d=h*c
232
+ #key = key.view(
233
+ # b,
234
+ # self.n_heads,
235
+ # self.k_channels,
236
+ # t_s
237
+ #).transpose(2, 3) #[b,h,t_s,c]
238
+ #value = value.view(
239
+ # b,
240
+ # self.n_heads,
241
+ # self.k_channels,
242
+ # t_s
243
+ #).transpose(2, 3) #[b,h,t_s,c]
244
+ #scores = torch.matmul(
245
+ # query / math.sqrt(self.k_channels), key.transpose(-2, -1)
246
+ #) #[b,h,t_t,t_s]
247
+ query = query.view(
248
+ b,
249
+ self.n_heads,
250
+ self.k_channels,
251
+ t_t
252
+ ) #[b,h,c,t_t]
253
+ key = key.view(
254
+ b,
255
+ self.n_heads,
256
+ self.k_channels,
257
+ t_s
258
+ ) #[b,h,c,t_s]
259
+ value = value.view(
260
+ b,
261
+ self.n_heads,
262
+ self.k_channels,
263
+ t_s
264
+ ) #[b,h,c,t_s]
265
+ scores = torch.einsum('bhdt,bhds -> bhts', query / math.sqrt(self.k_channels), key) #[b,h,t_t,t_s]
266
+ #if self.window_size is not None:
267
+ # assert t_s == t_t, "Relative attention is only available for self-attention."
268
+ # key_relative_embeddings = self._get_relative_embeddings(
269
+ # self.emb_rel_k, t_s
270
+ # )
271
+ # rel_logits = self._matmul_with_relative_keys(
272
+ # query / math.sqrt(self.k_channels), key_relative_embeddings
273
+ # ) #[b,h,t_t,d],[h or 1,e,d] ->[b,h,t_t,e]
274
+ # scores_local = self._relative_position_to_absolute_position(rel_logits)
275
+ # scores = scores + scores_local
276
+ #if self.proximal_bias:
277
+ # assert t_s == t_t, "Proximal bias is only available for self-attention."
278
+ # scores = scores + \
279
+ # self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
280
+ #if mask is not None:
281
+ # scores = scores.masked_fill(mask == 0, -1e4)
282
+ # if self.block_length is not None:
283
+ # assert t_s == t_t, "Local attention is only available for self-attention."
284
+ # block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
285
+ # scores = scores.masked_fill(block_mask == 0, -1e4)
286
+ #p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
287
+ #p_attn = self.drop(p_attn)
288
+ #output = torch.matmul(p_attn, value) # [b,h,t_t,t_s],[b,h,t_s,c] -> [b,h,t_t,c]
289
+ #if self.window_size is not None:
290
+ # relative_weights = self._absolute_position_to_relative_position(p_attn) #[b, h, t_t, 2*t_t-1]
291
+ # value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) #[h or 1, 2*t_t-1, c]
292
+ # output = output + \
293
+ # self._matmul_with_relative_values(
294
+ # relative_weights, value_relative_embeddings) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, t_t, c]
295
+ #output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, c] -> [b,h,c,t_t] -> [b, d, t_t]
296
+ if self.window_size is not None:
297
+ assert t_s == t_t, "Relative attention is only available for self-attention."
298
+ key_relative_embeddings = self._get_relative_embeddings(
299
+ self.emb_rel_k, t_s
300
+ )
301
+ rel_logits = torch.einsum('bhdt,hed->bhte',
302
+ query / math.sqrt(self.k_channels), key_relative_embeddings
303
+ ) #[b,h,c,t_t],[h or 1,e,c] ->[b,h,t_t,e]
304
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
305
+ scores = scores + scores_local
306
+ if self.proximal_bias:
307
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
308
+ scores = scores + \
309
+ self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
310
+ if mask is not None:
311
+ scores = scores.masked_fill(mask == 0, -1e4)
312
+ if self.block_length is not None:
313
+ assert t_s == t_t, "Local attention is only available for self-attention."
314
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
315
+ scores = scores.masked_fill(block_mask == 0, -1e4)
316
+ p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
317
+ p_attn = self.drop(p_attn)
318
+ output = torch.einsum('bhcs,bhts->bhct', value , p_attn) # [b,h,c,t_s],[b,h,t_t,t_s] -> [b,h,c,t_t]
319
+ if self.window_size is not None:
320
+ relative_weights = self._absolute_position_to_relative_position(p_attn) #[b, h, t_t, 2*t_t-1]
321
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) #[h or 1, 2*t_t-1, c]
322
+ output = output + \
323
+ torch.einsum('bhte,hec->bhct',
324
+ relative_weights, value_relative_embeddings) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, c, t_t]
325
+ output = output.view(b, d, t_t) # [b, h, c, t_t] -> [b, d, t_t]
326
+ return output, p_attn
327
+
328
+ def _matmul_with_relative_values(self, x, y):
329
+ """
330
+ x: [b, h, l, m]
331
+ y: [h or 1, m, d]
332
+ ret: [b, h, l, d]
333
+ """
334
+ ret = torch.matmul(x, y.unsqueeze(0))
335
+ return ret
336
+
337
+ def _matmul_with_relative_keys(self, x, y):
338
+ """
339
+ x: [b, h, l, d]
340
+ y: [h or 1, m, d]
341
+ ret: [b, h, l, m]
342
+ """
343
+ #ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
344
+ ret = torch.einsum('bhld,hmd -> bhlm', x, y)
345
+ return ret
346
+
347
+ def _get_relative_embeddings(self, relative_embeddings, length):
348
+ max_relative_position = 2 * self.window_size + 1
349
+ # Pad first before slice to avoid using cond ops.
350
+ pad_length = max(length - (self.window_size + 1), 0)
351
+ slice_start_position = max((self.window_size + 1) - length, 0)
352
+ slice_end_position = slice_start_position + 2 * length - 1
353
+ if pad_length > 0:
354
+ padded_relative_embeddings = F.pad(
355
+ relative_embeddings,
356
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
357
+ else:
358
+ padded_relative_embeddings = relative_embeddings
359
+ used_relative_embeddings = padded_relative_embeddings[
360
+ :, slice_start_position:slice_end_position
361
+ ]
362
+ return used_relative_embeddings
363
+
364
+ def _relative_position_to_absolute_position(self, x):
365
+ """
366
+ x: [b, h, l, 2*l-1]
367
+ ret: [b, h, l, l]
368
+ """
369
+ batch, heads, length, _ = x.size()
370
+ # Concat columns of pad to shift from relative to absolute indexing.
371
+ x = F.pad(x, commons.convert_pad_shape(
372
+ [[0, 0], [0, 0], [0, 0], [0, 1]]
373
+ ))
374
+
375
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
376
+ x_flat = x.view([batch, heads, length * 2 * length])
377
+ x_flat = F.pad(x_flat, commons.convert_pad_shape(
378
+ [[0, 0], [0, 0], [0, length-1]]
379
+ ))
380
+
381
+ # Reshape and slice out the padded elements.
382
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[
383
+ :, :, :length, length-1:
384
+ ]
385
+ return x_final
386
+
387
+ def _absolute_position_to_relative_position(self, x):
388
+ """
389
+ x: [b, h, l, l]
390
+ ret: [b, h, l, 2*l-1]
391
+ """
392
+ batch, heads, length, _ = x.size()
393
+ # padd along column
394
+ x = F.pad(x, commons.convert_pad_shape(
395
+ [[0, 0], [0, 0], [0, 0], [0, length-1]]
396
+ ))
397
+ x_flat = x.view([batch, heads, length**2 + length*(length - 1)])
398
+ # add 0's in the beginning that will skew the elements after reshape
399
+ x_flat = F.pad(x_flat, commons.convert_pad_shape(
400
+ [[0, 0], [0, 0], [length, 0]]
401
+ ))
402
+ x_final = x_flat.view([batch, heads, length, 2*length])[:, :, :, 1:]
403
+ return x_final
404
+
405
+ def _attention_bias_proximal(self, length):
406
+ """Bias for self-attention to encourage attention to close positions.
407
+ Args:
408
+ length: an integer scalar.
409
+ Returns:
410
+ a Tensor with shape [1, 1, length, length]
411
+ """
412
+ r = torch.arange(length, dtype=torch.float32)
413
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
414
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
415
+
416
+
417
+ class FFN(nn.Module):
418
+ def __init__(
419
+ self,
420
+ in_channels,
421
+ out_channels,
422
+ filter_channels,
423
+ kernel_size,
424
+ p_dropout=0.,
425
+ activation=None,
426
+ causal=False
427
+ ):
428
+ super().__init__()
429
+ self.in_channels = in_channels
430
+ self.out_channels = out_channels
431
+ self.filter_channels = filter_channels
432
+ self.kernel_size = kernel_size
433
+ self.p_dropout = p_dropout
434
+ self.activation = activation
435
+ self.causal = causal
436
+
437
+ if causal:
438
+ self.padding = self._causal_padding
439
+ else:
440
+ self.padding = self._same_padding
441
+
442
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
443
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
444
+ self.drop = nn.Dropout(p_dropout)
445
+
446
+ def forward(self, x, x_mask):
447
+ x = self.conv_1(self.padding(x * x_mask))
448
+ if self.activation == "gelu":
449
+ x = x * torch.sigmoid(1.702 * x)
450
+ else:
451
+ x = torch.relu(x)
452
+ x = self.drop(x)
453
+ x = self.conv_2(self.padding(x * x_mask))
454
+ return x * x_mask
455
+
456
+ def _causal_padding(self, x):
457
+ if self.kernel_size == 1:
458
+ return x
459
+ pad_l = self.kernel_size - 1
460
+ pad_r = 0
461
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
462
+ x = F.pad(x, commons.convert_pad_shape(padding))
463
+ return x
464
+
465
+ def _same_padding(self, x):
466
+ if self.kernel_size == 1:
467
+ return x
468
+ pad_l = (self.kernel_size - 1) // 2
469
+ pad_r = self.kernel_size // 2
470
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
471
+ x = F.pad(x, commons.convert_pad_shape(padding))
472
+ return x
commons.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ import math
3
+ import torch
4
+ from torch.nn import functional as F
5
+
6
+
7
+ def init_weights(m, mean=0.0, std=0.01):
8
+ classname = m.__class__.__name__
9
+ if classname.find("Conv") != -1:
10
+ m.weight.data.normal_(mean, std)
11
+
12
+
13
+ def get_padding(kernel_size, dilation=1):
14
+ return int((kernel_size * dilation - dilation) / 2)
15
+
16
+
17
+ def convert_pad_shape(pad_shape):
18
+ l = pad_shape[::-1]
19
+ pad_shape = [item for sublist in l for item in sublist]
20
+ return pad_shape
21
+
22
+
23
+ def intersperse(lst, item):
24
+ result = [item] * (len(lst) * 2 + 1)
25
+ result[1::2] = lst
26
+ return result
27
+
28
+
29
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
30
+ """KL(P||Q)"""
31
+ kl = (logs_q - logs_p) - 0.5
32
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
33
+ return kl
34
+
35
+
36
+ def rand_gumbel(shape):
37
+ """Sample from the Gumbel distribution, protect from overflows."""
38
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
39
+ return -torch.log(-torch.log(uniform_samples))
40
+
41
+
42
+ def rand_gumbel_like(x):
43
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
44
+ return g
45
+
46
+
47
+ def slice_segments(x, ids_str, segment_size=4):
48
+ ret = torch.zeros_like(x[:, :, :segment_size])
49
+ for i in range(x.size(0)):
50
+ idx_str = ids_str[i]
51
+ idx_end = idx_str + segment_size
52
+ ret[i] = x[i, :, idx_str:idx_end]
53
+ return ret
54
+
55
+
56
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
57
+ b, d, t = x.size()
58
+ if x_lengths is None:
59
+ x_lengths = t
60
+ ids_str_max = x_lengths - segment_size + 1
61
+ ids_str = (torch.rand([b]).to(device=x.device)
62
+ * ids_str_max).to(dtype=torch.long)
63
+ ids_str = torch.max(torch.zeros(ids_str.size()).to(ids_str.device), ids_str).to(dtype=torch.long)
64
+ ret = slice_segments(x, ids_str, segment_size)
65
+ return ret, ids_str
66
+
67
+ def rand_slice_segments_for_cat(x, x_lengths=None, segment_size=4):
68
+ b, d, t = x.size()
69
+ if x_lengths is None:
70
+ x_lengths = t
71
+ ids_str_max = x_lengths - segment_size + 1
72
+ ids_str = torch.rand([b//2]).to(device=x.device)
73
+ ids_str = (torch.cat([ids_str,ids_str], dim=0)
74
+ * ids_str_max).to(dtype=torch.long)
75
+ ids_str = torch.max(torch.zeros(ids_str.size()).to(ids_str.device), ids_str).to(dtype=torch.long)
76
+ ret = slice_segments(x, ids_str, segment_size)
77
+ return ret, ids_str
78
+
79
+
80
+
81
+
82
+ def get_timing_signal_1d(
83
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
84
+ position = torch.arange(length, dtype=torch.float)
85
+ num_timescales = channels // 2
86
+ log_timescale_increment = (
87
+ math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1)
88
+ )
89
+ inv_timescales = min_timescale * torch.exp(
90
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
91
+ )
92
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
93
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
94
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
95
+ signal = signal.view(1, channels, length)
96
+ return signal
97
+
98
+
99
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
100
+ b, channels, length = x.size()
101
+ signal = get_timing_signal_1d(
102
+ length, channels, min_timescale, max_timescale
103
+ )
104
+ return x + signal.to(dtype=x.dtype, device=x.device)
105
+
106
+
107
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
108
+ b, channels, length = x.size()
109
+ signal = get_timing_signal_1d(
110
+ length, channels, min_timescale, max_timescale
111
+ )
112
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
113
+
114
+
115
+ def subsequent_mask(length):
116
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
117
+ return mask
118
+
119
+
120
+ @torch.jit.script
121
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
122
+ n_channels_int = n_channels[0]
123
+ in_act = input_a + input_b
124
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
125
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
126
+ acts = t_act * s_act
127
+ return acts
128
+
129
+
130
+ def convert_pad_shape(pad_shape):
131
+ l = pad_shape[::-1]
132
+ pad_shape = [item for sublist in l for item in sublist]
133
+ return pad_shape
134
+
135
+
136
+ def shift_1d(x):
137
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
138
+ return x
139
+
140
+
141
+ def sequence_mask(length, max_length=None):
142
+ if max_length is None:
143
+ max_length = length.max()
144
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
145
+ return x.unsqueeze(0) < length.unsqueeze(1)
146
+
147
+
148
+ def generate_path(duration, mask):
149
+ """
150
+ duration: [b, 1, t_x]
151
+ mask: [b, 1, t_y, t_x]
152
+ """
153
+ device = duration.device
154
+
155
+ b, _, t_y, t_x = mask.shape
156
+ cum_duration = torch.cumsum(duration, -1)
157
+
158
+ cum_duration_flat = cum_duration.view(b * t_x)
159
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
160
+ path = path.view(b, t_x, t_y)
161
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
162
+ path = path.unsqueeze(1).transpose(2, 3) * mask
163
+ return path
164
+
165
+
166
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
167
+ if isinstance(parameters, torch.Tensor):
168
+ parameters = [parameters]
169
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
170
+ norm_type = float(norm_type)
171
+ if clip_value is not None:
172
+ clip_value = float(clip_value)
173
+
174
+ total_norm = 0
175
+ for p in parameters:
176
+ param_norm = p.grad.data.norm(norm_type)
177
+ total_norm += param_norm.item() ** norm_type
178
+ if clip_value is not None:
179
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
180
+ total_norm = total_norm ** (1. / norm_type)
181
+ return total_norm
configs/config_en.yaml ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train:
2
+ log_interval: 200 # step unit
3
+ eval_interval: 400 # step unit
4
+ save_interval: 50 # epoch unit: 50 for baseline / 500 for fine-tuning
5
+ seed: 1234
6
+ epochs: 7000
7
+ learning_rate: 2e-4
8
+ betas: [0.8, 0.99]
9
+ eps: 1e-9
10
+ batch_size: 48
11
+ fp16_run: True #False
12
+ lr_decay: 0.999875
13
+ segment_size: 8192
14
+ c_mel: 45
15
+ c_kl: 1.0
16
+ c_vq: 1.
17
+ c_commit: 0.2
18
+ c_yin: 45.
19
+ log_path: "/pits/logs"
20
+ n_sample: 3
21
+ alpha: 200
22
+
23
+ data:
24
+ data_path: "/DATA/audio/VCTK-0.92"
25
+ training_files: "filelists/vctk_train_g2p.txt"
26
+ validation_files: "filelists/vctk_val_g2p.txt"
27
+ languages: "en_US"
28
+ text_cleaners: ["english_cleaners"]
29
+ sampling_rate: 22050
30
+ filter_length: 1024
31
+ hop_length: 256
32
+ win_length: 1024
33
+ n_mel_channels: 80
34
+ mel_fmin: 0.0
35
+ mel_fmax: null
36
+ add_blank: True
37
+ speakers: ["p225", "p226", "p227", "p228", "p229", "p230", "p231", "p232", "p233", "p234", "p236", "p237", "p238", "p239", "p240", "p241", "p243", "p244", "p245", "p246", "p247", "p248", "p249", "p250", "p251", "p252", "p253", "p254", "p255", "p256", "p257", "p258", "p259", "p260", "p261", "p262", "p263", "p264", "p265", "p266", "p267", "p268", "p269", "p270", "p271", "p272", "p273", "p274", "p275", "p276", "p277", "p278", "p279", "p281", "p282", "p283", "p284", "p285", "p286", "p287", "p288", "p292", "p293", "p294", "p295", "p297", "p298", "p299", "p300", "p301", "p302", "p303", "p304", "p305", "p306", "p307", "p308", "p310", "p311", "p312", "p313", "p314", "p316", "p317", "p318", "p323", "p326", "p329", "p330", "p333", "p334", "p335", "p336", "p339", "p340", "p341", "p343", "p345", "p347", "p351", "p360", "p361", "p362", "p363", "p364", "p374", "p376", "s5"]
38
+ persistent_workers: True
39
+ midi_start: -5
40
+ midi_end: 75
41
+ midis: 80
42
+ ying_window: 2048
43
+ ying_hop: 256
44
+ tau_max: 2048
45
+ octave_range: 24
46
+
47
+ model:
48
+ inter_channels: 192
49
+ hidden_channels: 192
50
+ filter_channels: 768
51
+ n_heads: 2
52
+ n_layers: 6
53
+ kernel_size: 3
54
+ p_dropout: 0.1
55
+ resblock: "1"
56
+ resblock_kernel_sizes: [3,7,11]
57
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
58
+ upsample_rates: [8,8,2,2]
59
+ upsample_initial_channel: 512
60
+ upsample_kernel_sizes: [16,16,4,4]
61
+ n_layers_q: 3
62
+ use_spectral_norm: False
63
+ gin_channels: 256
64
+ codebook_size: 320
65
+ yin_channels: 80
66
+ yin_start: 15 # scope start bin in nansy = 1.5/8
67
+ yin_scope: 50 # scope ratio in nansy = 5/8
68
+ yin_shift_range: 15 # same as default start index of yingram
logs/pits_vctk_AD_3000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df99b0315cdd3e4e138e46871b86df1e226c4ffc522c3fc2bb44be07fd757821
3
+ size 763076464
models.py ADDED
@@ -0,0 +1,1383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ # from https://github.com/ncsoft/avocodo
3
+ import math
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+
10
+ import modules
11
+ import attentions
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ #for Q option
15
+ #from functions import vq, vq_st
16
+
17
+ from analysis import Pitch
18
+ from pqmf import PQMF
19
+
20
+
21
+ class StochasticDurationPredictor(nn.Module):
22
+
23
+ def __init__(self,
24
+ in_channels,
25
+ filter_channels,
26
+ kernel_size,
27
+ p_dropout,
28
+ n_flows=4,
29
+ gin_channels=0):
30
+ super().__init__()
31
+ # it needs to be removed from future version.
32
+ filter_channels = in_channels
33
+ self.in_channels = in_channels
34
+ self.filter_channels = filter_channels
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.n_flows = n_flows
38
+ self.gin_channels = gin_channels
39
+
40
+ self.log_flow = modules.Log()
41
+ self.flows = nn.ModuleList()
42
+ self.flows.append(modules.ElementwiseAffine(2))
43
+ for i in range(n_flows):
44
+ self.flows.append(
45
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
46
+ self.flows.append(modules.Flip())
47
+
48
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
49
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
50
+ self.post_convs = modules.DDSConv(filter_channels,
51
+ kernel_size,
52
+ n_layers=3,
53
+ p_dropout=p_dropout)
54
+ self.post_flows = nn.ModuleList()
55
+ self.post_flows.append(modules.ElementwiseAffine(2))
56
+ for i in range(4):
57
+ self.post_flows.append(
58
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
59
+ self.post_flows.append(modules.Flip())
60
+
61
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
62
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
63
+ self.convs = modules.DDSConv(filter_channels,
64
+ kernel_size,
65
+ n_layers=3,
66
+ p_dropout=p_dropout)
67
+ if gin_channels != 0:
68
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
69
+
70
+ def forward(self,
71
+ x,
72
+ x_mask,
73
+ w=None,
74
+ g=None,
75
+ reverse=False,
76
+ noise_scale=1.0):
77
+ x = torch.detach(x)
78
+ x = self.pre(x)
79
+ if g is not None:
80
+ g = torch.detach(g)
81
+ x = x + self.cond(g)
82
+ x = self.convs(x, x_mask)
83
+ x = self.proj(x) * x_mask
84
+
85
+ if not reverse:
86
+ flows = self.flows
87
+ assert w is not None
88
+
89
+ logdet_tot_q = 0
90
+ h_w = self.post_pre(w)
91
+ h_w = self.post_convs(h_w, x_mask)
92
+ h_w = self.post_proj(h_w) * x_mask
93
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(
94
+ device=x.device, dtype=x.dtype) * x_mask
95
+ z_q = e_q
96
+ for flow in self.post_flows:
97
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
98
+ logdet_tot_q += logdet_q
99
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
100
+ u = torch.sigmoid(z_u) * x_mask
101
+ z0 = (w - u) * x_mask
102
+ logdet_tot_q += torch.sum(
103
+ (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
104
+ logq = torch.sum(
105
+ -0.5 * (math.log(2 * math.pi) +
106
+ (e_q**2)) * x_mask, [1, 2]) - logdet_tot_q
107
+
108
+ logdet_tot = 0
109
+ z0, logdet = self.log_flow(z0, x_mask)
110
+ logdet_tot += logdet
111
+ z = torch.cat([z0, z1], 1)
112
+ for flow in flows:
113
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
114
+ logdet_tot = logdet_tot + logdet
115
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) +
116
+ (z**2)) * x_mask, [1, 2]) - logdet_tot
117
+ return nll + logq # [b]
118
+ else:
119
+ flows = list(reversed(self.flows))
120
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
121
+ z = torch.randn(x.size(0), 2, x.size(2)).to(
122
+ device=x.device, dtype=x.dtype) * noise_scale
123
+ for flow in flows:
124
+ z = flow(z, x_mask, g=x, reverse=reverse)
125
+ z0, z1 = torch.split(z, [1, 1], 1)
126
+ logw = z0
127
+ return logw
128
+
129
+
130
+ class DurationPredictor(nn.Module):
131
+
132
+ def __init__(self,
133
+ in_channels,
134
+ filter_channels,
135
+ kernel_size,
136
+ p_dropout,
137
+ gin_channels=0):
138
+ super().__init__()
139
+
140
+ self.in_channels = in_channels
141
+ self.filter_channels = filter_channels
142
+ self.kernel_size = kernel_size
143
+ self.p_dropout = p_dropout
144
+ self.gin_channels = gin_channels
145
+
146
+ self.drop = nn.Dropout(p_dropout)
147
+ self.conv_1 = nn.Conv1d(in_channels,
148
+ filter_channels,
149
+ kernel_size,
150
+ padding=kernel_size // 2)
151
+ self.norm_1 = modules.LayerNorm(filter_channels)
152
+ self.conv_2 = nn.Conv1d(filter_channels,
153
+ filter_channels,
154
+ kernel_size,
155
+ padding=kernel_size // 2)
156
+ self.norm_2 = modules.LayerNorm(filter_channels)
157
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
158
+
159
+ if gin_channels != 0:
160
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
161
+
162
+ def forward(self, x, x_mask, g=None):
163
+ x = torch.detach(x)
164
+ if g is not None:
165
+ g = torch.detach(g)
166
+ x = x + self.cond(g)
167
+ x = self.conv_1(x * x_mask)
168
+ x = torch.relu(x)
169
+ x = self.norm_1(x)
170
+ x = self.drop(x)
171
+ x = self.conv_2(x * x_mask)
172
+ x = torch.relu(x)
173
+ x = self.norm_2(x)
174
+ x = self.drop(x)
175
+ x = self.proj(x * x_mask)
176
+ return x * x_mask
177
+
178
+
179
+ class TextEncoder(nn.Module):
180
+
181
+ def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels,
182
+ n_heads, n_layers, kernel_size, p_dropout):
183
+ super().__init__()
184
+ self.n_vocab = n_vocab
185
+ self.out_channels = out_channels
186
+ self.hidden_channels = hidden_channels
187
+ self.filter_channels = filter_channels
188
+ self.n_heads = n_heads
189
+ self.n_layers = n_layers
190
+ self.kernel_size = kernel_size
191
+ self.p_dropout = p_dropout
192
+
193
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
194
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
195
+ self.emb_t = nn.Embedding(6, hidden_channels)
196
+ nn.init.normal_(self.emb_t.weight, 0.0, hidden_channels**-0.5)
197
+
198
+ self.encoder = attentions.Encoder(hidden_channels, filter_channels,
199
+ n_heads, n_layers, kernel_size,
200
+ p_dropout)
201
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
202
+
203
+ def forward(self, x, t, x_lengths):
204
+ t_zero = (t == 0)
205
+ emb_t = self.emb_t(t)
206
+ emb_t[t_zero, :] = 0
207
+ x = (self.emb(x) + emb_t) * math.sqrt(
208
+ self.hidden_channels) # [b, t, h]
209
+ #x = torch.transpose(x, 1, -1) # [b, h, t]
210
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(1)),
211
+ 1).to(x.dtype)
212
+ #x = self.encoder(x * x_mask, x_mask)
213
+ x = torch.einsum('btd,but->bdt', x, x_mask)
214
+ x = self.encoder(x, x_mask)
215
+ stats = self.proj(x) * x_mask
216
+
217
+ m, logs = torch.split(stats, self.out_channels, dim=1)
218
+ return x, m, logs, x_mask
219
+
220
+
221
+ class ResidualCouplingBlock(nn.Module):
222
+
223
+ def __init__(self,
224
+ channels,
225
+ hidden_channels,
226
+ kernel_size,
227
+ dilation_rate,
228
+ n_layers,
229
+ n_flows=4,
230
+ gin_channels=0):
231
+ super().__init__()
232
+ self.channels = channels
233
+ self.hidden_channels = hidden_channels
234
+ self.kernel_size = kernel_size
235
+ self.dilation_rate = dilation_rate
236
+ self.n_layers = n_layers
237
+ self.n_flows = n_flows
238
+ self.gin_channels = gin_channels
239
+
240
+ self.flows = nn.ModuleList()
241
+ for i in range(n_flows):
242
+ self.flows.append(
243
+ modules.ResidualCouplingLayer(channels,
244
+ hidden_channels,
245
+ kernel_size,
246
+ dilation_rate,
247
+ n_layers,
248
+ gin_channels=gin_channels,
249
+ mean_only=True))
250
+ self.flows.append(modules.Flip())
251
+
252
+ def forward(self, x, x_mask, g=None, reverse=False):
253
+ if not reverse:
254
+ for flow in self.flows:
255
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
256
+ else:
257
+ for flow in reversed(self.flows):
258
+ x = flow(x, x_mask, g=g, reverse=reverse)
259
+ return x
260
+
261
+
262
+ class PosteriorEncoder(nn.Module):
263
+
264
+ def __init__(self,
265
+ in_channels,
266
+ out_channels,
267
+ hidden_channels,
268
+ kernel_size,
269
+ dilation_rate,
270
+ n_layers,
271
+ gin_channels=0):
272
+ super().__init__()
273
+ self.in_channels = in_channels
274
+ self.out_channels = out_channels
275
+ self.hidden_channels = hidden_channels
276
+ self.kernel_size = kernel_size
277
+ self.dilation_rate = dilation_rate
278
+ self.n_layers = n_layers
279
+ self.gin_channels = gin_channels
280
+
281
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
282
+ self.enc = modules.WN(hidden_channels,
283
+ kernel_size,
284
+ dilation_rate,
285
+ n_layers,
286
+ gin_channels=gin_channels)
287
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
288
+
289
+ def forward(self, x, x_lengths, g=None):
290
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)),
291
+ 1).to(x.dtype)
292
+ x = self.pre(x) * x_mask
293
+ x = self.enc(x, x_mask, g=g)
294
+ stats = self.proj(x) * x_mask
295
+ m, logs = torch.split(stats, self.out_channels, dim=1)
296
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
297
+ return z, m, logs, x_mask
298
+
299
+
300
+ class Generator(nn.Module):
301
+
302
+ def __init__(self,
303
+ initial_channel,
304
+ resblock,
305
+ resblock_kernel_sizes,
306
+ resblock_dilation_sizes,
307
+ upsample_rates,
308
+ upsample_initial_channel,
309
+ upsample_kernel_sizes,
310
+ gin_channels=0):
311
+ super(Generator, self).__init__()
312
+ self.num_kernels = len(resblock_kernel_sizes)
313
+ self.num_upsamples = len(upsample_rates)
314
+ self.conv_pre = Conv1d(initial_channel,
315
+ upsample_initial_channel,
316
+ 7,
317
+ 1,
318
+ padding=3)
319
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
320
+
321
+ self.ups = nn.ModuleList()
322
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
323
+ self.ups.append(
324
+ weight_norm(
325
+ ConvTranspose1d(upsample_initial_channel // (2**i),
326
+ upsample_initial_channel // (2**(i + 1)),
327
+ k,
328
+ u,
329
+ padding=(k - u) // 2)))
330
+
331
+ self.resblocks = nn.ModuleList()
332
+ self.conv_posts = nn.ModuleList()
333
+ for i in range(len(self.ups)):
334
+ ch = upsample_initial_channel // (2**(i + 1))
335
+ for j, (k, d) in enumerate(
336
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)):
337
+ self.resblocks.append(resblock(ch, k, d))
338
+ if i >= len(self.ups) - 3:
339
+ self.conv_posts.append(
340
+ Conv1d(ch, 1, 7, 1, padding=3, bias=False))
341
+ self.ups.apply(init_weights)
342
+
343
+ if gin_channels != 0:
344
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
345
+
346
+ def forward(self, x, g=None):
347
+ x = self.conv_pre(x)
348
+ if g is not None:
349
+ x = x + self.cond(g)
350
+
351
+ for i in range(self.num_upsamples):
352
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
353
+ x = self.ups[i](x)
354
+ xs = None
355
+ for j in range(self.num_kernels):
356
+ xs = xs + self.resblocks[i * self.num_kernels + j](x) if xs is not None \
357
+ else self.resblocks[i * self.num_kernels + j](x)
358
+ x = xs / self.num_kernels
359
+ x = F.leaky_relu(x)
360
+ x = self.conv_posts[-1](x)
361
+ x = torch.tanh(x)
362
+
363
+ return x
364
+
365
+ def hier_forward(self, x, g=None):
366
+ outs = []
367
+ x = self.conv_pre(x)
368
+ if g is not None:
369
+ x = x + self.cond(g)
370
+
371
+ for i in range(self.num_upsamples):
372
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
373
+ x = self.ups[i](x)
374
+ xs = None
375
+ for j in range(self.num_kernels):
376
+ xs = xs + self.resblocks[i * self.num_kernels + j](x) if xs is not None \
377
+ else self.resblocks[i * self.num_kernels + j](x)
378
+ x = xs / self.num_kernels
379
+ if i >= self.num_upsamples - 3:
380
+ _x = F.leaky_relu(x)
381
+ _x = self.conv_posts[i - self.num_upsamples + 3](_x)
382
+ _x = torch.tanh(_x)
383
+ outs.append(_x)
384
+ return outs
385
+
386
+ def remove_weight_norm(self):
387
+ print('Removing weight norm...')
388
+ for l in self.ups:
389
+ remove_weight_norm(l)
390
+ for l in self.resblocks:
391
+ l.remove_weight_norm()
392
+
393
+
394
+ class DiscriminatorP(nn.Module):
395
+
396
+ def __init__(self,
397
+ period,
398
+ kernel_size=5,
399
+ stride=3,
400
+ use_spectral_norm=False):
401
+ super(DiscriminatorP, self).__init__()
402
+ self.period = period
403
+ self.use_spectral_norm = use_spectral_norm
404
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
405
+ self.convs = nn.ModuleList([
406
+ norm_f(
407
+ Conv2d(1,
408
+ 32, (kernel_size, 1), (stride, 1),
409
+ padding=(get_padding(kernel_size, 1), 0))),
410
+ norm_f(
411
+ Conv2d(32,
412
+ 128, (kernel_size, 1), (stride, 1),
413
+ padding=(get_padding(kernel_size, 1), 0))),
414
+ norm_f(
415
+ Conv2d(128,
416
+ 512, (kernel_size, 1), (stride, 1),
417
+ padding=(get_padding(kernel_size, 1), 0))),
418
+ norm_f(
419
+ Conv2d(512,
420
+ 1024, (kernel_size, 1), (stride, 1),
421
+ padding=(get_padding(kernel_size, 1), 0))),
422
+ norm_f(
423
+ Conv2d(1024,
424
+ 1024, (kernel_size, 1),
425
+ 1,
426
+ padding=(get_padding(kernel_size, 1), 0))),
427
+ ])
428
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
429
+
430
+ def forward(self, x):
431
+ fmap = []
432
+
433
+ # 1d to 2d
434
+ b, c, t = x.shape
435
+ if t % self.period != 0: # pad first
436
+ n_pad = self.period - (t % self.period)
437
+ x = F.pad(x, (0, n_pad), "reflect")
438
+ t = t + n_pad
439
+ x = x.view(b, c, t // self.period, self.period)
440
+
441
+ for l in self.convs:
442
+ x = l(x)
443
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
444
+ fmap.append(x)
445
+ x = self.conv_post(x)
446
+ fmap.append(x)
447
+ x = torch.flatten(x, 1, -1)
448
+
449
+ return x, fmap
450
+
451
+
452
+ class DiscriminatorS(nn.Module):
453
+
454
+ def __init__(self, use_spectral_norm=False):
455
+ super(DiscriminatorS, self).__init__()
456
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
457
+ self.convs = nn.ModuleList([
458
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
459
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
460
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
461
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
462
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
463
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
464
+ ])
465
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
466
+
467
+ def forward(self, x):
468
+ fmap = []
469
+
470
+ for l in self.convs:
471
+ x = l(x)
472
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
473
+ fmap.append(x)
474
+ x = self.conv_post(x)
475
+ fmap.append(x)
476
+ x = torch.flatten(x, 1, -1)
477
+
478
+ return x, fmap
479
+
480
+
481
+ class MultiPeriodDiscriminator(nn.Module):
482
+
483
+ def __init__(self, use_spectral_norm=False):
484
+ super(MultiPeriodDiscriminator, self).__init__()
485
+ periods = [2, 3, 5, 7, 11]
486
+
487
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
488
+ discs = discs + \
489
+ [DiscriminatorP(i, use_spectral_norm=use_spectral_norm)
490
+ for i in periods]
491
+ self.discriminators = nn.ModuleList(discs)
492
+
493
+ def forward(self, y, y_hat):
494
+ y_d_rs = []
495
+ y_d_gs = []
496
+ fmap_rs = []
497
+ fmap_gs = []
498
+ for i, d in enumerate(self.discriminators):
499
+ y_d_r, fmap_r = d(y)
500
+ y_d_g, fmap_g = d(y_hat)
501
+ y_d_rs.append(y_d_r)
502
+ y_d_gs.append(y_d_g)
503
+ fmap_rs.append(fmap_r)
504
+ fmap_gs.append(fmap_g)
505
+
506
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
507
+
508
+
509
+ ##### Avocodo
510
+ class CoMBDBlock(torch.nn.Module):
511
+
512
+ def __init__(
513
+ self,
514
+ h_u, # List[int],
515
+ d_k, # List[int],
516
+ d_s, # List[int],
517
+ d_d, # List[int],
518
+ d_g, # List[int],
519
+ d_p, # List[int],
520
+ op_f, # int,
521
+ op_k, # int,
522
+ op_g, # int,
523
+ use_spectral_norm=False):
524
+ super(CoMBDBlock, self).__init__()
525
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
526
+
527
+ self.convs = nn.ModuleList()
528
+ filters = [[1, h_u[0]]]
529
+ for i in range(len(h_u) - 1):
530
+ filters.append([h_u[i], h_u[i + 1]])
531
+ for _f, _k, _s, _d, _g, _p in zip(filters, d_k, d_s, d_d, d_g, d_p):
532
+ self.convs.append(
533
+ norm_f(
534
+ Conv1d(in_channels=_f[0],
535
+ out_channels=_f[1],
536
+ kernel_size=_k,
537
+ stride=_s,
538
+ dilation=_d,
539
+ groups=_g,
540
+ padding=_p)))
541
+ self.projection_conv = norm_f(
542
+ Conv1d(in_channels=filters[-1][1],
543
+ out_channels=op_f,
544
+ kernel_size=op_k,
545
+ groups=op_g))
546
+
547
+ def forward(self, x, b_y, b_y_hat):
548
+ fmap_r = []
549
+ fmap_g = []
550
+ for block in self.convs:
551
+ x = block(x)
552
+ x = F.leaky_relu(x, 0.2)
553
+ f_r, f_g = x.split([b_y, b_y_hat], dim=0)
554
+ fmap_r.append(f_r.tile([2, 1, 1]) if b_y < b_y_hat else f_r)
555
+ fmap_g.append(f_g)
556
+ x = self.projection_conv(x)
557
+ x_r, x_g = x.split([b_y, b_y_hat], dim=0)
558
+ return x_r.tile([2, 1, 1
559
+ ]) if b_y < b_y_hat else x_r, x_g, fmap_r, fmap_g
560
+
561
+
562
+ class CoMBD(torch.nn.Module):
563
+
564
+ def __init__(self, use_spectral_norm=False):
565
+ super(CoMBD, self).__init__()
566
+ self.pqmf_list = nn.ModuleList([
567
+ PQMF(4, 192, 0.13, 10.0), #lv2
568
+ PQMF(2, 256, 0.25, 10.0) #lv1
569
+ ])
570
+ combd_h_u = [[16, 64, 256, 1024, 1024, 1024] for _ in range(3)]
571
+ combd_d_k = [[7, 11, 11, 11, 11, 5], [11, 21, 21, 21, 21, 5],
572
+ [15, 41, 41, 41, 41, 5]]
573
+ combd_d_s = [[1, 1, 4, 4, 4, 1] for _ in range(3)]
574
+ combd_d_d = [[1, 1, 1, 1, 1, 1] for _ in range(3)]
575
+ combd_d_g = [[1, 4, 16, 64, 256, 1] for _ in range(3)]
576
+
577
+ combd_d_p = [[3, 5, 5, 5, 5, 2], [5, 10, 10, 10, 10, 2],
578
+ [7, 20, 20, 20, 20, 2]]
579
+ combd_op_f = [1, 1, 1]
580
+ combd_op_k = [3, 3, 3]
581
+ combd_op_g = [1, 1, 1]
582
+
583
+ self.blocks = nn.ModuleList()
584
+ for _h_u, _d_k, _d_s, _d_d, _d_g, _d_p, _op_f, _op_k, _op_g in zip(
585
+ combd_h_u,
586
+ combd_d_k,
587
+ combd_d_s,
588
+ combd_d_d,
589
+ combd_d_g,
590
+ combd_d_p,
591
+ combd_op_f,
592
+ combd_op_k,
593
+ combd_op_g,
594
+ ):
595
+ self.blocks.append(
596
+ CoMBDBlock(
597
+ _h_u,
598
+ _d_k,
599
+ _d_s,
600
+ _d_d,
601
+ _d_g,
602
+ _d_p,
603
+ _op_f,
604
+ _op_k,
605
+ _op_g,
606
+ ))
607
+
608
+ def _block_forward(self, ys, ys_hat, blocks):
609
+ outs_real = []
610
+ outs_fake = []
611
+ f_maps_real = []
612
+ f_maps_fake = []
613
+ for y, y_hat, block in zip(ys, ys_hat,
614
+ blocks): #y:B, y_hat: 2B if i!=-1 else B,B
615
+ b_y = y.shape[0]
616
+ b_y_hat = y_hat.shape[0]
617
+ cat_y = torch.cat([y, y_hat], dim=0)
618
+ out_real, out_fake, f_map_r, f_map_g = block(cat_y, b_y, b_y_hat)
619
+ outs_real.append(out_real)
620
+ outs_fake.append(out_fake)
621
+ f_maps_real.append(f_map_r)
622
+ f_maps_fake.append(f_map_g)
623
+ return outs_real, outs_fake, f_maps_real, f_maps_fake
624
+
625
+ def _pqmf_forward(self, ys, ys_hat):
626
+ # preprocess for multi_scale forward
627
+ multi_scale_inputs_hat = []
628
+ for pqmf_ in self.pqmf_list:
629
+ multi_scale_inputs_hat.append(pqmf_.analysis(ys_hat[-1])[:, :1, :])
630
+
631
+ # real
632
+ # for hierarchical forward
633
+ #outs_real_, f_maps_real_ = self._block_forward(
634
+ # ys, self.blocks)
635
+
636
+ # for multi_scale forward
637
+ #outs_real, f_maps_real = self._block_forward(
638
+ # ys[:-1], self.blocks[:-1], outs_real, f_maps_real)
639
+ #outs_real.extend(outs_real[:-1])
640
+ #f_maps_real.extend(f_maps_real[:-1])
641
+
642
+ #outs_real = [torch.cat([o,o], dim=0) if i!=len(outs_real_)-1 else o for i,o in enumerate(outs_real_)]
643
+ #f_maps_real = [[torch.cat([fmap,fmap], dim=0) if i!=len(f_maps_real_)-1 else fmap for fmap in fmaps ] \
644
+ # for i,fmaps in enumerate(f_maps_real_)]
645
+
646
+ inputs_fake = [
647
+ torch.cat([y, multi_scale_inputs_hat[i]], dim=0)
648
+ if i != len(ys_hat) - 1 else y for i, y in enumerate(ys_hat)
649
+ ]
650
+ outs_real, outs_fake, f_maps_real, f_maps_fake = self._block_forward(
651
+ ys, inputs_fake, self.blocks)
652
+
653
+ # predicted
654
+ # for hierarchical forward
655
+ #outs_fake, f_maps_fake = self._block_forward(
656
+ # inputs_fake, self.blocks)
657
+
658
+ #outs_real_, f_maps_real_ = self._block_forward(
659
+ # ys, self.blocks)
660
+ # for multi_scale forward
661
+ #outs_fake, f_maps_fake = self._block_forward(
662
+ # multi_scale_inputs_hat, self.blocks[:-1], outs_fake, f_maps_fake)
663
+
664
+ return outs_real, outs_fake, f_maps_real, f_maps_fake
665
+
666
+ def forward(self, ys, ys_hat):
667
+ outs_real, outs_fake, f_maps_real, f_maps_fake = self._pqmf_forward(
668
+ ys, ys_hat)
669
+ return outs_real, outs_fake, f_maps_real, f_maps_fake
670
+
671
+
672
+ class MDC(torch.nn.Module):
673
+
674
+ def __init__(self,
675
+ in_channels,
676
+ out_channels,
677
+ strides,
678
+ kernel_size,
679
+ dilations,
680
+ use_spectral_norm=False):
681
+ super(MDC, self).__init__()
682
+ norm_f = weight_norm if not use_spectral_norm else spectral_norm
683
+ self.d_convs = nn.ModuleList()
684
+ for _k, _d in zip(kernel_size, dilations):
685
+ self.d_convs.append(
686
+ norm_f(
687
+ Conv1d(in_channels=in_channels,
688
+ out_channels=out_channels,
689
+ kernel_size=_k,
690
+ dilation=_d,
691
+ padding=get_padding(_k, _d))))
692
+ self.post_conv = norm_f(
693
+ Conv1d(in_channels=out_channels,
694
+ out_channels=out_channels,
695
+ kernel_size=3,
696
+ stride=strides,
697
+ padding=get_padding(_k, _d)))
698
+ self.softmax = torch.nn.Softmax(dim=-1)
699
+
700
+ def forward(self, x):
701
+ _out = None
702
+ for _l in self.d_convs:
703
+ _x = torch.unsqueeze(_l(x), -1)
704
+ _x = F.leaky_relu(_x, 0.2)
705
+ _out = torch.cat([_out, _x], axis=-1) if _out is not None \
706
+ else _x
707
+ x = torch.sum(_out, dim=-1)
708
+ x = self.post_conv(x)
709
+ x = F.leaky_relu(x, 0.2) # @@
710
+
711
+ return x
712
+
713
+
714
+ class SBDBlock(torch.nn.Module):
715
+
716
+ def __init__(self,
717
+ segment_dim,
718
+ strides,
719
+ filters,
720
+ kernel_size,
721
+ dilations,
722
+ use_spectral_norm=False):
723
+ super(SBDBlock, self).__init__()
724
+ norm_f = weight_norm if not use_spectral_norm else spectral_norm
725
+ self.convs = nn.ModuleList()
726
+ filters_in_out = [(segment_dim, filters[0])]
727
+ for i in range(len(filters) - 1):
728
+ filters_in_out.append([filters[i], filters[i + 1]])
729
+
730
+ for _s, _f, _k, _d in zip(strides, filters_in_out, kernel_size,
731
+ dilations):
732
+ self.convs.append(
733
+ MDC(in_channels=_f[0],
734
+ out_channels=_f[1],
735
+ strides=_s,
736
+ kernel_size=_k,
737
+ dilations=_d,
738
+ use_spectral_norm=use_spectral_norm))
739
+ self.post_conv = norm_f(
740
+ Conv1d(in_channels=_f[1],
741
+ out_channels=1,
742
+ kernel_size=3,
743
+ stride=1,
744
+ padding=3 // 2)) # @@
745
+
746
+ def forward(self, x):
747
+ fmap_r = []
748
+ fmap_g = []
749
+ for _l in self.convs:
750
+ x = _l(x)
751
+ f_r, f_g = torch.chunk(x, 2, dim=0)
752
+ fmap_r.append(f_r)
753
+ fmap_g.append(f_g)
754
+ x = self.post_conv(x) # @@
755
+ x_r, x_g = torch.chunk(x, 2, dim=0)
756
+ return x_r, x_g, fmap_r, fmap_g
757
+
758
+
759
+ class MDCDConfig:
760
+
761
+ def __init__(self):
762
+ self.pqmf_params = [16, 256, 0.03, 10.0]
763
+ self.f_pqmf_params = [64, 256, 0.1, 9.0]
764
+ self.filters = [[64, 128, 256, 256, 256], [64, 128, 256, 256, 256],
765
+ [64, 128, 256, 256, 256], [32, 64, 128, 128, 128]]
766
+ self.kernel_sizes = [[[7, 7, 7], [7, 7, 7], [7, 7, 7], [7, 7, 7],
767
+ [7, 7, 7]],
768
+ [[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5],
769
+ [5, 5, 5]],
770
+ [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3],
771
+ [3, 3, 3]],
772
+ [[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5],
773
+ [5, 5, 5]]]
774
+ self.dilations = [[[5, 7, 11], [5, 7, 11], [5, 7, 11], [5, 7, 11],
775
+ [5, 7, 11]],
776
+ [[3, 5, 7], [3, 5, 7], [3, 5, 7], [3, 5, 7],
777
+ [3, 5, 7]],
778
+ [[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3],
779
+ [1, 2, 3]],
780
+ [[1, 2, 3], [1, 2, 3], [1, 2, 3], [2, 3, 5],
781
+ [2, 3, 5]]]
782
+ self.strides = [[1, 1, 3, 3, 1], [1, 1, 3, 3, 1], [1, 1, 3, 3, 1],
783
+ [1, 1, 3, 3, 1]]
784
+ self.band_ranges = [[0, 6], [0, 11], [0, 16], [0, 64]]
785
+ self.transpose = [False, False, False, True]
786
+ self.segment_size = 8192
787
+
788
+
789
+ class SBD(torch.nn.Module):
790
+
791
+ def __init__(self, use_spectral_norm=False):
792
+ super(SBD, self).__init__()
793
+ self.config = MDCDConfig()
794
+ self.pqmf = PQMF(*self.config.pqmf_params)
795
+ if True in self.config.transpose:
796
+ self.f_pqmf = PQMF(*self.config.f_pqmf_params)
797
+ else:
798
+ self.f_pqmf = None
799
+
800
+ self.discriminators = torch.nn.ModuleList()
801
+
802
+ for _f, _k, _d, _s, _br, _tr in zip(self.config.filters,
803
+ self.config.kernel_sizes,
804
+ self.config.dilations,
805
+ self.config.strides,
806
+ self.config.band_ranges,
807
+ self.config.transpose):
808
+ if _tr:
809
+ segment_dim = self.config.segment_size // _br[1] - _br[0]
810
+ else:
811
+ segment_dim = _br[1] - _br[0]
812
+
813
+ self.discriminators.append(
814
+ SBDBlock(segment_dim=segment_dim,
815
+ filters=_f,
816
+ kernel_size=_k,
817
+ dilations=_d,
818
+ strides=_s,
819
+ use_spectral_norm=use_spectral_norm))
820
+
821
+ def forward(self, y, y_hat):
822
+ y_d_rs = []
823
+ y_d_gs = []
824
+ fmap_rs = []
825
+ fmap_gs = []
826
+ y_in = self.pqmf.analysis(y)
827
+ y_hat_in = self.pqmf.analysis(y_hat)
828
+ y_in_f = self.f_pqmf.analysis(y)
829
+ y_hat_in_f = self.f_pqmf.analysis(y_hat)
830
+
831
+ for d, br, tr in zip(self.discriminators, self.config.band_ranges,
832
+ self.config.transpose):
833
+ if not tr:
834
+ _y_in = y_in[:, br[0]:br[1], :]
835
+ _y_hat_in = y_hat_in[:, br[0]:br[1], :]
836
+ else:
837
+ _y_in = y_in_f[:, br[0]:br[1], :]
838
+ _y_hat_in = y_hat_in_f[:, br[0]:br[1], :]
839
+ _y_in = torch.transpose(_y_in, 1, 2)
840
+ _y_hat_in = torch.transpose(_y_hat_in, 1, 2)
841
+ #y_d_r, fmap_r = d(_y_in)
842
+ #y_d_g, fmap_g = d(_y_hat_in)
843
+ cat_y = torch.cat([_y_in, _y_hat_in], dim=0)
844
+ y_d_r, y_d_g, fmap_r, fmap_g = d(cat_y)
845
+ y_d_rs.append(y_d_r)
846
+ fmap_rs.append(fmap_r)
847
+ y_d_gs.append(y_d_g)
848
+ fmap_gs.append(fmap_g)
849
+
850
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
851
+
852
+
853
+ class AvocodoDiscriminator(nn.Module):
854
+
855
+ def __init__(self, use_spectral_norm=False):
856
+ super(AvocodoDiscriminator, self).__init__()
857
+ self.combd = CoMBD(use_spectral_norm)
858
+ self.sbd = SBD(use_spectral_norm)
859
+
860
+ def forward(self, y, ys_hat):
861
+ ys = [
862
+ self.combd.pqmf_list[0].analysis(y)[:, :1], #lv2
863
+ self.combd.pqmf_list[1].analysis(y)[:, :1], #lv1
864
+ y
865
+ ]
866
+ y_c_rs, y_c_gs, fmap_c_rs, fmap_c_gs = self.combd(ys, ys_hat)
867
+ y_s_rs, y_s_gs, fmap_s_rs, fmap_s_gs = self.sbd(y, ys_hat[-1])
868
+ y_c_rs.extend(y_s_rs)
869
+ y_c_gs.extend(y_s_gs)
870
+ fmap_c_rs.extend(fmap_s_rs)
871
+ fmap_c_gs.extend(fmap_s_gs)
872
+ return y_c_rs, y_c_gs, fmap_c_rs, fmap_c_gs
873
+
874
+
875
+ ##### Avocodo
876
+
877
+
878
+ class YingDecoder(nn.Module):
879
+
880
+ def __init__(self,
881
+ hidden_channels,
882
+ kernel_size,
883
+ dilation_rate,
884
+ n_layers,
885
+ yin_start,
886
+ yin_scope,
887
+ yin_shift_range,
888
+ gin_channels=0):
889
+ super().__init__()
890
+ self.in_channels = yin_scope
891
+ self.out_channels = yin_scope
892
+ self.hidden_channels = hidden_channels
893
+ self.kernel_size = kernel_size
894
+ self.dilation_rate = dilation_rate
895
+ self.n_layers = n_layers
896
+ self.gin_channels = gin_channels
897
+
898
+ self.yin_start = yin_start
899
+ self.yin_scope = yin_scope
900
+ self.yin_shift_range = yin_shift_range
901
+
902
+ self.pre = nn.Conv1d(self.in_channels, hidden_channels, 1)
903
+ self.dec = modules.WN(hidden_channels,
904
+ kernel_size,
905
+ dilation_rate,
906
+ n_layers,
907
+ gin_channels=gin_channels)
908
+ self.proj = nn.Conv1d(hidden_channels, self.out_channels, 1)
909
+
910
+ def crop_scope(self, x, yin_start,
911
+ scope_shift): # x: tensor [B,C,T] #scope_shift: tensor [B]
912
+ return torch.stack([
913
+ x[i, yin_start + scope_shift[i]:yin_start + self.yin_scope +
914
+ scope_shift[i], :] for i in range(x.shape[0])
915
+ ],
916
+ dim=0)
917
+
918
+ def infer(self, z_yin, z_mask, g=None):
919
+ B = z_yin.shape[0]
920
+ scope_shift = torch.randint(-self.yin_shift_range,
921
+ self.yin_shift_range, (B, ),
922
+ dtype=torch.int)
923
+ z_yin_crop = self.crop_scope(z_yin, self.yin_start, scope_shift)
924
+ x = self.pre(z_yin_crop) * z_mask
925
+ x = self.dec(x, z_mask, g=g)
926
+ yin_hat_crop = self.proj(x) * z_mask
927
+ return yin_hat_crop
928
+
929
+ def forward(self, z_yin, yin_gt, z_mask, g=None):
930
+ B = z_yin.shape[0]
931
+ scope_shift = torch.randint(-self.yin_shift_range,
932
+ self.yin_shift_range, (B, ),
933
+ dtype=torch.int)
934
+ z_yin_crop = self.crop_scope(z_yin, self.yin_start, scope_shift)
935
+ yin_gt_shifted_crop = self.crop_scope(yin_gt, self.yin_start,
936
+ scope_shift)
937
+ yin_gt_crop = self.crop_scope(yin_gt, self.yin_start,
938
+ torch.zeros_like(scope_shift))
939
+ x = self.pre(z_yin_crop) * z_mask
940
+ x = self.dec(x, z_mask, g=g)
941
+ yin_hat_crop = self.proj(x) * z_mask
942
+ return yin_gt_crop, yin_gt_shifted_crop, yin_hat_crop, z_yin_crop, scope_shift
943
+
944
+
945
+ # For Q option
946
+ #class VQEmbedding(nn.Module):
947
+ #
948
+ # def __init__(self, codebook_size,
949
+ # code_channels):
950
+ # super().__init__()
951
+ # self.embedding = nn.Embedding(codebook_size, code_channels)
952
+ # self.embedding.weight.data.uniform_(-1. / codebook_size,
953
+ # 1. / codebook_size)
954
+ #
955
+ # def forward(self, z_e_x):
956
+ # z_e_x_ = z_e_x.permute(0, 2, 1).contiguous()
957
+ # latent_indices = vq(z_e_x_, self.embedding.weight)
958
+ # z_q = self.embedding(latent_indices).permute(0, 2, 1)
959
+ # return z_q
960
+ #
961
+ # def straight_through(self, z_e_x):
962
+ # z_e_x_ = z_e_x.permute(0, 2, 1).contiguous()
963
+ # z_q_x_st_, indices = vq_st(z_e_x_, self.embedding.weight.detach())
964
+ # z_q_x_st = z_q_x_st_.permute(0, 2, 1).contiguous()
965
+ #
966
+ # z_q_x_flatten = torch.index_select(self.embedding.weight,
967
+ # dim=0,
968
+ # index=indices)
969
+ # z_q_x_ = z_q_x_flatten.view_as(z_e_x_)
970
+ # z_q_x = z_q_x_.permute(0, 2, 1).contiguous()
971
+ # return z_q_x_st, z_q_x
972
+
973
+
974
+ class SynthesizerTrn(nn.Module):
975
+ """
976
+ Synthesizer for Training
977
+ """
978
+
979
+ def __init__(
980
+ self,
981
+ n_vocab,
982
+ spec_channels,
983
+ segment_size,
984
+ midi_start,
985
+ midi_end,
986
+ octave_range,
987
+ inter_channels,
988
+ hidden_channels,
989
+ filter_channels,
990
+ n_heads,
991
+ n_layers,
992
+ kernel_size,
993
+ p_dropout,
994
+ resblock,
995
+ resblock_kernel_sizes,
996
+ resblock_dilation_sizes,
997
+ upsample_rates,
998
+ upsample_initial_channel,
999
+ upsample_kernel_sizes,
1000
+ yin_channels,
1001
+ yin_start,
1002
+ yin_scope,
1003
+ yin_shift_range,
1004
+ n_speakers=0,
1005
+ gin_channels=0,
1006
+ use_sdp=True,
1007
+ #codebook_size=256, #for Q option
1008
+ **kwargs):
1009
+
1010
+ super().__init__()
1011
+ self.n_vocab = n_vocab
1012
+ self.spec_channels = spec_channels
1013
+ self.inter_channels = inter_channels
1014
+ self.hidden_channels = hidden_channels
1015
+ self.filter_channels = filter_channels
1016
+ self.n_heads = n_heads
1017
+ self.n_layers = n_layers
1018
+ self.kernel_size = kernel_size
1019
+ self.p_dropout = p_dropout
1020
+ self.resblock = resblock
1021
+ self.resblock_kernel_sizes = resblock_kernel_sizes
1022
+ self.resblock_dilation_sizes = resblock_dilation_sizes
1023
+ self.upsample_rates = upsample_rates
1024
+ self.upsample_initial_channel = upsample_initial_channel
1025
+ self.upsample_kernel_sizes = upsample_kernel_sizes
1026
+ self.segment_size = segment_size
1027
+ self.n_speakers = n_speakers
1028
+ self.gin_channels = gin_channels
1029
+
1030
+ self.yin_channels = yin_channels
1031
+ self.yin_start = yin_start
1032
+ self.yin_scope = yin_scope
1033
+
1034
+ self.use_sdp = use_sdp
1035
+ self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels,
1036
+ filter_channels, n_heads, n_layers,
1037
+ kernel_size, p_dropout)
1038
+ self.dec = Generator(
1039
+ inter_channels - yin_channels +
1040
+ yin_scope,
1041
+ resblock,
1042
+ resblock_kernel_sizes,
1043
+ resblock_dilation_sizes,
1044
+ upsample_rates,
1045
+ upsample_initial_channel,
1046
+ upsample_kernel_sizes,
1047
+ gin_channels=gin_channels)
1048
+
1049
+ self.enc_spec = PosteriorEncoder(spec_channels,
1050
+ inter_channels - yin_channels,
1051
+ inter_channels - yin_channels,
1052
+ 5,
1053
+ 1,
1054
+ 16,
1055
+ gin_channels=gin_channels)
1056
+
1057
+ self.enc_pitch = PosteriorEncoder(yin_channels,
1058
+ yin_channels,
1059
+ yin_channels,
1060
+ 5,
1061
+ 1,
1062
+ 16,
1063
+ gin_channels=gin_channels)
1064
+
1065
+ self.flow = ResidualCouplingBlock(inter_channels,
1066
+ hidden_channels,
1067
+ 5,
1068
+ 1,
1069
+ 4,
1070
+ gin_channels=gin_channels)
1071
+
1072
+ if use_sdp:
1073
+ self.dp = StochasticDurationPredictor(hidden_channels,
1074
+ 192,
1075
+ 3,
1076
+ 0.5,
1077
+ 4,
1078
+ gin_channels=gin_channels)
1079
+ else:
1080
+ self.dp = DurationPredictor(hidden_channels,
1081
+ 256,
1082
+ 3,
1083
+ 0.5,
1084
+ gin_channels=gin_channels)
1085
+
1086
+ self.yin_dec = YingDecoder(yin_scope,
1087
+ 5,
1088
+ 1,
1089
+ 4,
1090
+ yin_start,
1091
+ yin_scope,
1092
+ yin_shift_range,
1093
+ gin_channels=gin_channels)
1094
+
1095
+ #self.vq = VQEmbedding(codebook_size, inter_channels - yin_channels)#inter_channels // 2)
1096
+ self.emb_g = nn.Embedding(self.n_speakers, gin_channels)
1097
+
1098
+ self.pitch = Pitch(midi_start=midi_start,
1099
+ midi_end=midi_end,
1100
+ octave_range=octave_range)
1101
+
1102
+ def crop_scope(
1103
+ self,
1104
+ x,
1105
+ scope_shift=0): # x: list #need to modify for non-scalar shift
1106
+ return [
1107
+ i[:, self.yin_start + scope_shift:self.yin_start + self.yin_scope +
1108
+ scope_shift, :] for i in x
1109
+ ]
1110
+
1111
+ def crop_scope_tensor(
1112
+ self, x,
1113
+ scope_shift): # x: tensor [B,C,T] #scope_shift: tensor [B]
1114
+ return torch.stack([
1115
+ x[i, self.yin_start + scope_shift[i]:self.yin_start +
1116
+ self.yin_scope + scope_shift[i], :] for i in range(x.shape[0])
1117
+ ],
1118
+ dim=0)
1119
+
1120
+ def yin_dec_infer(self, z_yin, z_mask, sid=None):
1121
+ if self.n_speakers > 0:
1122
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1123
+ else:
1124
+ g = None
1125
+ return self.yin_dec.infer(z_yin, z_mask, g)
1126
+
1127
+ def forward(self,
1128
+ x,
1129
+ t,
1130
+ x_lengths,
1131
+ y,
1132
+ y_lengths,
1133
+ ying,
1134
+ ying_lengths,
1135
+ sid=None,
1136
+ scope_shift=0):
1137
+ x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths)
1138
+ if self.n_speakers > 0:
1139
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1140
+ else:
1141
+ g = None
1142
+
1143
+ z_spec, m_spec, logs_spec, spec_mask = self.enc_spec(y, y_lengths, g=g)
1144
+
1145
+ #for Q option
1146
+ #z_spec_q_st, z_spec_q = self.vq.straight_through(z_spec)
1147
+ #z_spec_q_st = z_spec_q_st * spec_mask
1148
+ #z_spec_q = z_spec_q * spec_mask
1149
+
1150
+ z_yin, m_yin, logs_yin, yin_mask = self.enc_pitch(ying, y_lengths, g=g)
1151
+ z_yin_crop, logs_yin_crop, m_yin_crop = self.crop_scope(
1152
+ [z_yin, logs_yin, m_yin], scope_shift)
1153
+
1154
+ #yin dec loss
1155
+ yin_gt_crop, yin_gt_shifted_crop, yin_dec_crop, z_yin_crop_shifted, scope_shift = self.yin_dec(
1156
+ z_yin, ying, yin_mask, g)
1157
+
1158
+ z = torch.cat([z_spec, z_yin], dim=1)
1159
+ logs_q = torch.cat([logs_spec, logs_yin], dim=1)
1160
+ m_q = torch.cat([m_spec, m_yin], dim=1)
1161
+ y_mask = spec_mask
1162
+
1163
+ z_p = self.flow(z, y_mask, g=g)
1164
+
1165
+ z_dec = torch.cat([z_spec, z_yin_crop], dim=1)
1166
+
1167
+ z_dec_shifted = torch.cat([z_spec.detach(), z_yin_crop_shifted], dim=1)
1168
+ z_dec_ = torch.cat([z_dec, z_dec_shifted], dim=0)
1169
+
1170
+ with torch.no_grad():
1171
+ # negative cross-entropy
1172
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
1173
+ # [b, 1, t_s]
1174
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1],
1175
+ keepdim=True)
1176
+ # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s], z_p: [b,d,t]
1177
+ #neg_cent2 = torch.matmul(-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r)
1178
+ neg_cent2 = torch.einsum('bdt, bds -> bts', -0.5 * (z_p**2),
1179
+ s_p_sq_r)
1180
+ # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
1181
+ #neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r))
1182
+ neg_cent3 = torch.einsum('bdt, bds -> bts', z_p, (m_p * s_p_sq_r))
1183
+ neg_cent4 = torch.sum(-0.5 * (m_p**2) * s_p_sq_r, [1],
1184
+ keepdim=True) # [b, 1, t_s]
1185
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
1186
+
1187
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(
1188
+ y_mask, -1)
1189
+ from monotonic_align import maximum_path
1190
+ attn = maximum_path(neg_cent,
1191
+ attn_mask.squeeze(1)).unsqueeze(1).detach()
1192
+
1193
+ w = attn.sum(2)
1194
+ if self.use_sdp:
1195
+ l_length = self.dp(x, x_mask, w, g=g)
1196
+ l_length = l_length / torch.sum(x_mask)
1197
+ else:
1198
+ logw_ = torch.log(w + 1e-6) * x_mask
1199
+ logw = self.dp(x, x_mask, g=g)
1200
+ l_length = torch.sum(
1201
+ (logw - logw_)**2, [1, 2]) / torch.sum(x_mask) # for averaging
1202
+
1203
+ # expand prior
1204
+ m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p)
1205
+ logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p)
1206
+
1207
+ #z_slice, ids_slice = commons.rand_slice_segments(z_dec, y_lengths, self.segment_size)
1208
+ #o = self.dec(z_slice, g=g)
1209
+ z_slice, ids_slice = commons.rand_slice_segments_for_cat(
1210
+ z_dec_, torch.cat([y_lengths, y_lengths], dim=0),
1211
+ self.segment_size)
1212
+ o_ = self.dec.hier_forward(z_slice, g=torch.cat([g, g], dim=0))
1213
+ o = [torch.chunk(o_hier, 2, dim=0)[0] for o_hier in o_]
1214
+
1215
+ o_pad = F.pad(o_[-1], (768, 768 + (-o_[-1].shape[-1]) % 256 + 256 *
1216
+ (o_[-1].shape[-1] % 256 == 0)),
1217
+ mode='constant').squeeze(1)
1218
+ yin_hat = self.pitch.yingram(o_pad)
1219
+ yin_hat_crop = self.crop_scope([yin_hat])[0]
1220
+ yin_hat_shifted = self.crop_scope_tensor(
1221
+ torch.chunk(yin_hat, 2, dim=0)[0], scope_shift)
1222
+ return o, l_length, attn, ids_slice, x_mask, y_mask, o_, \
1223
+ (z, z_p, m_p, logs_p, m_q, logs_q), \
1224
+ (z_dec_), \
1225
+ (z_spec, m_spec, logs_spec, spec_mask, z_yin, m_yin, logs_yin, yin_mask), \
1226
+ (yin_gt_crop, yin_gt_shifted_crop, yin_dec_crop, yin_hat_crop, scope_shift, yin_hat_shifted)
1227
+
1228
+ def infer(self,
1229
+ x,
1230
+ t,
1231
+ x_lengths,
1232
+ sid=None,
1233
+ noise_scale=1,
1234
+ length_scale=1,
1235
+ noise_scale_w=1.,
1236
+ max_len=None,
1237
+ scope_shift=0): #need to fix #vector scope shift needed
1238
+ x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths)
1239
+ if self.n_speakers > 0:
1240
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1241
+ else:
1242
+ g = None
1243
+
1244
+ if self.use_sdp:
1245
+ logw = self.dp(x,
1246
+ x_mask,
1247
+ g=g,
1248
+ reverse=True,
1249
+ noise_scale=noise_scale_w)
1250
+ else:
1251
+ logw = self.dp(x, x_mask, g=g)
1252
+ w = torch.exp(logw) * x_mask * length_scale
1253
+ w_ceil = torch.ceil(w)
1254
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
1255
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
1256
+ 1).to(x_mask.dtype)
1257
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
1258
+ attn = commons.generate_path(w_ceil, attn_mask)
1259
+
1260
+ m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p)
1261
+ logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p)
1262
+
1263
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
1264
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1265
+ z_spec, z_yin = torch.split(z,
1266
+ self.inter_channels - self.yin_channels,
1267
+ dim=1)
1268
+ z_yin_crop = self.crop_scope([z_yin], scope_shift)[0]
1269
+ z_crop = torch.cat([z_spec, z_yin_crop], dim=1)
1270
+ o = self.dec((z_crop * y_mask)[:, :, :max_len], g=g)
1271
+ return o, attn, y_mask, (z_crop, z, z_p, m_p, logs_p)
1272
+
1273
+ def infer_pre_decoder(self,
1274
+ x,
1275
+ t,
1276
+ x_lengths,
1277
+ sid=None,
1278
+ noise_scale=1.,
1279
+ length_scale=1.,
1280
+ noise_scale_w=1.,
1281
+ max_len=None,
1282
+ scope_shift=0):
1283
+ x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths)
1284
+ if self.n_speakers > 0:
1285
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1286
+ else:
1287
+ g = None
1288
+
1289
+ if self.use_sdp:
1290
+ logw = self.dp(x,
1291
+ x_mask,
1292
+ g=g,
1293
+ reverse=True,
1294
+ noise_scale=noise_scale_w)
1295
+ else:
1296
+ logw = self.dp(x, x_mask, g=g)
1297
+ w = torch.exp(logw) * x_mask * length_scale
1298
+ w_ceil = torch.ceil(w)
1299
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
1300
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
1301
+ 1).to(x_mask.dtype)
1302
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
1303
+ attn = commons.generate_path(w_ceil, attn_mask)
1304
+
1305
+ m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p)
1306
+ logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p)
1307
+
1308
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
1309
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1310
+ z_spec, z_yin = torch.split(z,
1311
+ self.inter_channels - self.yin_channels,
1312
+ dim=1)
1313
+ z_yin_crop = self.crop_scope([z_yin], scope_shift)[0]
1314
+ z_crop = torch.cat([z_spec, z_yin_crop], dim=1)
1315
+ decoder_inputs = z_crop * y_mask
1316
+ return decoder_inputs, attn, y_mask, (z_crop, z, z_p, m_p, logs_p)
1317
+
1318
+ def infer_pre_lr(
1319
+ self,
1320
+ x,
1321
+ t,
1322
+ x_lengths,
1323
+ sid=None,
1324
+ length_scale=1,
1325
+ noise_scale_w=1.,
1326
+ ):
1327
+ x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths)
1328
+ if self.n_speakers > 0:
1329
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1330
+ else:
1331
+ g = None
1332
+
1333
+ if self.use_sdp:
1334
+ logw = self.dp(x,
1335
+ x_mask,
1336
+ g=g,
1337
+ reverse=True,
1338
+ noise_scale=noise_scale_w)
1339
+ else:
1340
+ logw = self.dp(x, x_mask, g=g)
1341
+ w = torch.exp(logw) * x_mask * length_scale
1342
+ w_ceil = torch.ceil(w)
1343
+ return w_ceil, x, m_p, logs_p, x_mask, g
1344
+
1345
+ def infer_lr(self, w_ceil, x, m_p, logs_p, x_mask):
1346
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
1347
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None),
1348
+ 1).to(x_mask.dtype)
1349
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
1350
+ attn = commons.generate_path(w_ceil, attn_mask)
1351
+
1352
+ m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p)
1353
+ logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p)
1354
+ return m_p, logs_p, y_mask
1355
+
1356
+ def infer_post_lr_pre_decoder(self,
1357
+ m_p,
1358
+ logs_p,
1359
+ g,
1360
+ y_mask,
1361
+ noise_scale=1,
1362
+ scope_shift=0):
1363
+
1364
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
1365
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1366
+ z_spec, z_yin = torch.split(z,
1367
+ self.inter_channels - self.yin_channels,
1368
+ dim=1)
1369
+
1370
+ z_yin_crop = self.crop_scope([z_yin], scope_shift)[0]
1371
+ z_crop = torch.cat([z_spec, z_yin_crop], dim=1)
1372
+ decoder_inputs = z_crop * y_mask
1373
+
1374
+ return decoder_inputs, y_mask, (z_crop, z, z_p, m_p, logs_p)
1375
+
1376
+ def infer_decode_chunk(self, decoder_inputs, sid=None):
1377
+ if self.n_speakers > 0:
1378
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1379
+ else:
1380
+ g = None
1381
+ return self.dec(decoder_inputs, g=g)
1382
+
1383
+
modules.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import Conv1d
6
+ from torch.nn import functional as F
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+
13
+
14
+ LRELU_SLOPE = 0.1
15
+
16
+
17
+ class LayerNorm(nn.Module):
18
+ def __init__(self, channels, eps=1e-5):
19
+ super().__init__()
20
+ self.channels = channels
21
+ self.eps = eps
22
+
23
+ self.gamma = nn.Parameter(torch.ones(channels))
24
+ self.beta = nn.Parameter(torch.zeros(channels))
25
+
26
+ def forward(self, x):
27
+ x = x.transpose(1, -1)
28
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
29
+ return x.transpose(1, -1)
30
+
31
+
32
+ class ConvReluNorm(nn.Module):
33
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
34
+ super().__init__()
35
+ self.in_channels = in_channels
36
+ self.hidden_channels = hidden_channels
37
+ self.out_channels = out_channels
38
+ self.kernel_size = kernel_size
39
+ self.n_layers = n_layers
40
+ self.p_dropout = p_dropout
41
+ assert n_layers > 1, "Number of layers should be larger than 0."
42
+
43
+ self.conv_layers = nn.ModuleList()
44
+ self.norm_layers = nn.ModuleList()
45
+ self.conv_layers.append(
46
+ nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)
47
+ )
48
+ self.norm_layers.append(LayerNorm(hidden_channels))
49
+ self.relu_drop = nn.Sequential(
50
+ nn.ReLU(),
51
+ nn.Dropout(p_dropout))
52
+ for _ in range(n_layers-1):
53
+ self.conv_layers.append(nn.Conv1d(
54
+ hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)
55
+ )
56
+ self.norm_layers.append(LayerNorm(hidden_channels))
57
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
58
+ self.proj.weight.data.zero_()
59
+ self.proj.bias.data.zero_()
60
+
61
+ def forward(self, x, x_mask):
62
+ x_org = x
63
+ for i in range(self.n_layers):
64
+ x = self.conv_layers[i](x * x_mask)
65
+ x = self.norm_layers[i](x)
66
+ x = self.relu_drop(x)
67
+ x = x_org + self.proj(x)
68
+ return x * x_mask
69
+
70
+
71
+ class DDSConv(nn.Module):
72
+ """Dialted and Depth-Separable Convolution"""
73
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
74
+ super().__init__()
75
+ self.channels = channels
76
+ self.kernel_size = kernel_size
77
+ self.n_layers = n_layers
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = nn.Dropout(p_dropout)
81
+ self.convs_sep = nn.ModuleList()
82
+ self.convs_1x1 = nn.ModuleList()
83
+ self.norms_1 = nn.ModuleList()
84
+ self.norms_2 = nn.ModuleList()
85
+ for i in range(n_layers):
86
+ dilation = kernel_size ** i
87
+ padding = (kernel_size * dilation - dilation) // 2
88
+ self.convs_sep.append(
89
+ nn.Conv1d(
90
+ channels,
91
+ channels,
92
+ kernel_size,
93
+ groups=channels,
94
+ dilation=dilation,
95
+ padding=padding
96
+ )
97
+ )
98
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
99
+ self.norms_1.append(LayerNorm(channels))
100
+ self.norms_2.append(LayerNorm(channels))
101
+
102
+ def forward(self, x, x_mask, g=None):
103
+ if g is not None:
104
+ x = x + g
105
+ for i in range(self.n_layers):
106
+ y = self.convs_sep[i](x * x_mask)
107
+ y = self.norms_1[i](y)
108
+ y = F.gelu(y)
109
+ y = self.convs_1x1[i](y)
110
+ y = self.norms_2[i](y)
111
+ y = F.gelu(y)
112
+ y = self.drop(y)
113
+ x = x + y
114
+ return x * x_mask
115
+
116
+
117
+ class WN(torch.nn.Module):
118
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
119
+ super(WN, self).__init__()
120
+ assert(kernel_size % 2 == 1)
121
+ self.hidden_channels = hidden_channels
122
+ self.kernel_size = kernel_size,
123
+ self.dilation_rate = dilation_rate
124
+ self.n_layers = n_layers
125
+ self.gin_channels = gin_channels
126
+ self.p_dropout = p_dropout
127
+
128
+ self.in_layers = torch.nn.ModuleList()
129
+ self.res_skip_layers = torch.nn.ModuleList()
130
+ self.drop = nn.Dropout(p_dropout)
131
+
132
+ if gin_channels != 0:
133
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
134
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
135
+
136
+ for i in range(n_layers):
137
+ dilation = dilation_rate ** i
138
+ padding = int((kernel_size * dilation - dilation) / 2)
139
+ in_layer = torch.nn.Conv1d(
140
+ hidden_channels,
141
+ 2*hidden_channels,
142
+ kernel_size,
143
+ dilation=dilation,
144
+ padding=padding
145
+ )
146
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
147
+ self.in_layers.append(in_layer)
148
+
149
+ # last one is not necessary
150
+ if i < n_layers - 1:
151
+ res_skip_channels = 2 * hidden_channels
152
+ else:
153
+ res_skip_channels = hidden_channels
154
+
155
+ res_skip_layer = torch.nn.Conv1d(
156
+ hidden_channels, res_skip_channels, 1
157
+ )
158
+ res_skip_layer = torch.nn.utils.weight_norm(
159
+ res_skip_layer, name='weight'
160
+ )
161
+ self.res_skip_layers.append(res_skip_layer)
162
+
163
+ def forward(self, x, x_mask, g=None, **kwargs):
164
+ output = torch.zeros_like(x)
165
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
166
+
167
+ if g is not None:
168
+ g = self.cond_layer(g)
169
+
170
+ for i in range(self.n_layers):
171
+ x_in = self.in_layers[i](x)
172
+ if g is not None:
173
+ cond_offset = i * 2 * self.hidden_channels
174
+ g_l = g[:, cond_offset:cond_offset+2*self.hidden_channels, :]
175
+ else:
176
+ g_l = torch.zeros_like(x_in)
177
+
178
+ acts = commons.fused_add_tanh_sigmoid_multiply(
179
+ x_in,
180
+ g_l,
181
+ n_channels_tensor
182
+ )
183
+ acts = self.drop(acts)
184
+
185
+ res_skip_acts = self.res_skip_layers[i](acts)
186
+ if i < self.n_layers - 1:
187
+ res_acts = res_skip_acts[:, :self.hidden_channels, :]
188
+ x = (x + res_acts) * x_mask
189
+ output = output + res_skip_acts[:, self.hidden_channels:, :]
190
+ else:
191
+ output = output + res_skip_acts
192
+ return output * x_mask
193
+
194
+ def remove_weight_norm(self):
195
+ if self.gin_channels != 0:
196
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
197
+ for l in self.in_layers:
198
+ torch.nn.utils.remove_weight_norm(l)
199
+ for l in self.res_skip_layers:
200
+ torch.nn.utils.remove_weight_norm(l)
201
+
202
+
203
+ class ResBlock1(torch.nn.Module):
204
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
205
+ super(ResBlock1, self).__init__()
206
+ self.convs1 = nn.ModuleList([
207
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
208
+ padding=get_padding(kernel_size, dilation[0]))),
209
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
210
+ padding=get_padding(kernel_size, dilation[1]))),
211
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
212
+ padding=get_padding(kernel_size, dilation[2])))
213
+ ])
214
+ self.convs1.apply(init_weights)
215
+
216
+ self.convs2 = nn.ModuleList([
217
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
218
+ padding=get_padding(kernel_size, 1))),
219
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
220
+ padding=get_padding(kernel_size, 1))),
221
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
222
+ padding=get_padding(kernel_size, 1)))
223
+ ])
224
+ self.convs2.apply(init_weights)
225
+
226
+ def forward(self, x, x_mask=None):
227
+ for c1, c2 in zip(self.convs1, self.convs2):
228
+ xt = F.leaky_relu(x, LRELU_SLOPE)
229
+ if x_mask is not None:
230
+ xt = xt * x_mask
231
+ xt = c1(xt)
232
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
233
+ if x_mask is not None:
234
+ xt = xt * x_mask
235
+ xt = c2(xt)
236
+ x = xt + x
237
+ if x_mask is not None:
238
+ x = x * x_mask
239
+ return x
240
+
241
+ def remove_weight_norm(self):
242
+ for l in self.convs1:
243
+ remove_weight_norm(l)
244
+ for l in self.convs2:
245
+ remove_weight_norm(l)
246
+
247
+
248
+ class ResBlock2(torch.nn.Module):
249
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
250
+ super(ResBlock2, self).__init__()
251
+ self.convs = nn.ModuleList([
252
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
253
+ padding=get_padding(kernel_size, dilation[0]))),
254
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
255
+ padding=get_padding(kernel_size, dilation[1])))
256
+ ])
257
+ self.convs.apply(init_weights)
258
+
259
+ def forward(self, x, x_mask=None):
260
+ for c in self.convs:
261
+ xt = F.leaky_relu(x, LRELU_SLOPE)
262
+ if x_mask is not None:
263
+ xt = xt * x_mask
264
+ xt = c(xt)
265
+ x = xt + x
266
+ if x_mask is not None:
267
+ x = x * x_mask
268
+ return x
269
+
270
+ def remove_weight_norm(self):
271
+ for l in self.convs:
272
+ remove_weight_norm(l)
273
+
274
+
275
+ class Log(nn.Module):
276
+ def forward(self, x, x_mask, reverse=False, **kwargs):
277
+ if not reverse:
278
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
279
+ logdet = torch.sum(-y, [1, 2])
280
+ return y, logdet
281
+ else:
282
+ x = torch.exp(x) * x_mask
283
+ return x
284
+
285
+
286
+ class Flip(nn.Module):
287
+ def forward(self, x, *args, reverse=False, **kwargs):
288
+ x = torch.flip(x, [1])
289
+ if not reverse:
290
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
291
+ return x, logdet
292
+ else:
293
+ return x
294
+
295
+
296
+ class ElementwiseAffine(nn.Module):
297
+ def __init__(self, channels):
298
+ super().__init__()
299
+ self.channels = channels
300
+ self.m = nn.Parameter(torch.zeros(channels, 1))
301
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
302
+
303
+ def forward(self, x, x_mask, reverse=False, **kwargs):
304
+ if not reverse:
305
+ y = self.m + torch.exp(self.logs) * x
306
+ y = y * x_mask
307
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
308
+ return y, logdet
309
+ else:
310
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
311
+ return x
312
+
313
+
314
+ class ResidualCouplingLayer(nn.Module):
315
+ def __init__(
316
+ self,
317
+ channels,
318
+ hidden_channels,
319
+ kernel_size,
320
+ dilation_rate,
321
+ n_layers,
322
+ p_dropout=0,
323
+ gin_channels=0,
324
+ mean_only=False
325
+ ):
326
+ assert channels % 2 == 0, "channels should be divisible by 2"
327
+ super().__init__()
328
+ self.channels = channels
329
+ self.hidden_channels = hidden_channels
330
+ self.kernel_size = kernel_size
331
+ self.dilation_rate = dilation_rate
332
+ self.n_layers = n_layers
333
+ self.half_channels = channels // 2
334
+ self.mean_only = mean_only
335
+
336
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
337
+ self.enc = WN(
338
+ hidden_channels,
339
+ kernel_size,
340
+ dilation_rate,
341
+ n_layers,
342
+ p_dropout=p_dropout,
343
+ gin_channels=gin_channels
344
+ )
345
+ self.post = nn.Conv1d(
346
+ hidden_channels, self.half_channels * (2 - mean_only), 1
347
+ )
348
+ self.post.weight.data.zero_()
349
+ self.post.bias.data.zero_()
350
+
351
+ def forward(self, x, x_mask, g=None, reverse=False):
352
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
353
+ h = self.pre(x0) * x_mask
354
+ h = self.enc(h, x_mask, g=g)
355
+ stats = self.post(h) * x_mask
356
+ if not self.mean_only:
357
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
358
+ else:
359
+ m = stats
360
+ logs = torch.zeros_like(m)
361
+
362
+ if not reverse:
363
+ x1 = m + x1 * torch.exp(logs) * x_mask
364
+ x = torch.cat([x0, x1], 1)
365
+ logdet = torch.sum(logs, [1, 2])
366
+ return x, logdet
367
+ else:
368
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
369
+ x = torch.cat([x0, x1], 1)
370
+ return x
371
+
372
+
373
+ class ConvFlow(nn.Module):
374
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
375
+ super().__init__()
376
+ self.in_channels = in_channels
377
+ self.filter_channels = filter_channels
378
+ self.kernel_size = kernel_size
379
+ self.n_layers = n_layers
380
+ self.num_bins = num_bins
381
+ self.tail_bound = tail_bound
382
+ self.half_channels = in_channels // 2
383
+
384
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
385
+ self.convs = DDSConv(
386
+ filter_channels, kernel_size, n_layers, p_dropout=0.
387
+ )
388
+ self.proj = nn.Conv1d(
389
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
390
+ )
391
+ self.proj.weight.data.zero_()
392
+ self.proj.bias.data.zero_()
393
+
394
+ def forward(self, x, x_mask, g=None, reverse=False):
395
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
396
+ h = self.pre(x0)
397
+ h = self.convs(h, x_mask, g=g)
398
+ h = self.proj(h) * x_mask
399
+
400
+ b, c, t = x0.shape
401
+ # [b, cx?, t] -> [b, c, t, ?]
402
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2)
403
+
404
+ unnormalized_widths = h[..., :self.num_bins] / \
405
+ math.sqrt(self.filter_channels)
406
+ unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / \
407
+ math.sqrt(self.filter_channels)
408
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
409
+
410
+ x1, logabsdet = piecewise_rational_quadratic_transform(
411
+ x1,
412
+ unnormalized_widths,
413
+ unnormalized_heights,
414
+ unnormalized_derivatives,
415
+ inverse=reverse,
416
+ tails='linear',
417
+ tail_bound=self.tail_bound
418
+ )
419
+
420
+ x = torch.cat([x0, x1], 1) * x_mask
421
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
422
+ if not reverse:
423
+ return x, logdet
424
+ else:
425
+ return x
pqmf.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Copyright 2020 Tomoki Hayashi
4
+ # MIT License (https://opensource.org/licenses/MIT)
5
+
6
+ """Pseudo QMF modules."""
7
+ '''
8
+ Copied from https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/layers/pqmf.py
9
+ '''
10
+
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn.functional as F
14
+
15
+ from scipy.signal import kaiser
16
+
17
+
18
+ def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0):
19
+ """Design prototype filter for PQMF.
20
+ This method is based on `A Kaiser window approach for the design of prototype
21
+ filters of cosine modulated filterbanks`_.
22
+ Args:
23
+ taps (int): The number of filter taps.
24
+ cutoff_ratio (float): Cut-off frequency ratio.
25
+ beta (float): Beta coefficient for kaiser window.
26
+ Returns:
27
+ ndarray: Impluse response of prototype filter (taps + 1,).
28
+ .. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
29
+ https://ieeexplore.ieee.org/abstract/document/681427
30
+ """
31
+ # check the arguments are valid
32
+ assert taps % 2 == 0, "The number of taps mush be even number."
33
+ assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
34
+
35
+ # make initial filter
36
+ omega_c = np.pi * cutoff_ratio
37
+ with np.errstate(invalid="ignore"):
38
+ h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (
39
+ np.pi * (np.arange(taps + 1) - 0.5 * taps)
40
+ )
41
+ h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
42
+
43
+ # apply kaiser window
44
+ w = kaiser(taps + 1, beta)
45
+ h = h_i * w
46
+
47
+ return h
48
+
49
+
50
+ class PQMF(torch.nn.Module):
51
+ """PQMF module.
52
+ This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
53
+ .. _`Near-perfect-reconstruction pseudo-QMF banks`:
54
+ https://ieeexplore.ieee.org/document/258122
55
+ """
56
+
57
+ def __init__(self, subbands=4, taps=62, cutoff_ratio=0.142, beta=9.0):
58
+ """Initilize PQMF module.
59
+ The cutoff_ratio and beta parameters are optimized for #subbands = 4.
60
+ See dicussion in https://github.com/kan-bayashi/ParallelWaveGAN/issues/195.
61
+ Args:
62
+ subbands (int): The number of subbands.
63
+ taps (int): The number of filter taps.
64
+ cutoff_ratio (float): Cut-off frequency ratio.
65
+ beta (float): Beta coefficient for kaiser window.
66
+ """
67
+ super(PQMF, self).__init__()
68
+
69
+ # build analysis & synthesis filter coefficients
70
+ h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
71
+ h_analysis = np.zeros((subbands, len(h_proto)))
72
+ h_synthesis = np.zeros((subbands, len(h_proto)))
73
+ for k in range(subbands):
74
+ h_analysis[k] = (
75
+ 2
76
+ * h_proto
77
+ * np.cos(
78
+ (2 * k + 1)
79
+ * (np.pi / (2 * subbands))
80
+ * (np.arange(taps + 1) - (taps / 2))
81
+ + (-1) ** k * np.pi / 4
82
+ )
83
+ )
84
+ h_synthesis[k] = (
85
+ 2
86
+ * h_proto
87
+ * np.cos(
88
+ (2 * k + 1)
89
+ * (np.pi / (2 * subbands))
90
+ * (np.arange(taps + 1) - (taps / 2))
91
+ - (-1) ** k * np.pi / 4
92
+ )
93
+ )
94
+
95
+ # convert to tensor
96
+ analysis_filter = torch.Tensor(h_analysis).float().unsqueeze(1)
97
+ synthesis_filter = torch.Tensor(h_synthesis).float().unsqueeze(0)
98
+
99
+ # register coefficients as beffer
100
+ self.register_buffer("analysis_filter", analysis_filter)
101
+ self.register_buffer("synthesis_filter", synthesis_filter)
102
+
103
+ # filter for downsampling & upsampling
104
+ updown_filter = torch.zeros((subbands, subbands, subbands)).float()
105
+ for k in range(subbands):
106
+ updown_filter[k, k, 0] = 1.0
107
+ self.register_buffer("updown_filter", updown_filter)
108
+ self.subbands = subbands
109
+
110
+ # keep padding info
111
+ self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
112
+
113
+ def analysis(self, x):
114
+ """Analysis with PQMF.
115
+ Args:
116
+ x (Tensor): Input tensor (B, 1, T).
117
+ Returns:
118
+ Tensor: Output tensor (B, subbands, T // subbands).
119
+ """
120
+ x = F.conv1d(self.pad_fn(x), self.analysis_filter)
121
+ return F.conv1d(x, self.updown_filter, stride=self.subbands)
122
+
123
+ def synthesis(self, x):
124
+ """Synthesis with PQMF.
125
+ Args:
126
+ x (Tensor): Input tensor (B, subbands, T // subbands).
127
+ Returns:
128
+ Tensor: Output tensor (B, 1, T).
129
+ """
130
+ # NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
131
+ # Not sure this is the correct way, it is better to check again.
132
+ # TODO(kan-bayashi): Understand the reconstruction procedure
133
+ x = F.conv_transpose1d(
134
+ x, self.updown_filter * self.subbands, stride=self.subbands
135
+ )
136
+ return F.conv1d(self.pad_fn(x), self.synthesis_filter)
text/__init__.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ import re
3
+ from unicodedata import normalize
4
+
5
+ from text.cleaners import collapse_whitespace
6
+ from text.symbols import lang_to_dict, lang_to_dict_inverse
7
+
8
+
9
+ def text_to_sequence(raw_text, lang):
10
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
11
+ Args:
12
+ text: string to convert to a sequence
13
+ lang: language of the input text
14
+ Returns:
15
+ List of integers corresponding to the symbols in the text
16
+ '''
17
+
18
+ _symbol_to_id = lang_to_dict(lang)
19
+ text = collapse_whitespace(raw_text)
20
+
21
+ if lang == 'ko_KR':
22
+ text = normalize('NFKD', text)
23
+ sequence = [_symbol_to_id[symbol] for symbol in text]
24
+ tone = [0 for i in sequence]
25
+
26
+ elif lang == 'en_US':
27
+ _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
28
+ sequence = []
29
+
30
+ while len(text):
31
+ m = _curly_re.match(text)
32
+
33
+ if m is not None:
34
+ ar = m.group(1)
35
+ sequence += [_symbol_to_id[symbol] for symbol in ar]
36
+ ar = m.group(2)
37
+ sequence += [_symbol_to_id[symbol] for symbol in ar.split()]
38
+ text = m.group(3)
39
+ else:
40
+ sequence += [_symbol_to_id[symbol] for symbol in text]
41
+ break
42
+
43
+ tone = [0 for i in sequence]
44
+
45
+ else:
46
+ raise RuntimeError('Wrong type of lang')
47
+
48
+ assert len(sequence) == len(tone)
49
+ return sequence, tone
50
+
51
+
52
+ def sequence_to_text(sequence, lang):
53
+ '''Converts a sequence of IDs back to a string'''
54
+ _id_to_symbol = lang_to_dict_inverse(lang)
55
+ result = ''
56
+ for symbol_id in sequence:
57
+ s = _id_to_symbol[symbol_id]
58
+ result += s
59
+ return result
60
+
61
+
62
+ def _clean_text(text, cleaner_names):
63
+ for name in cleaner_names:
64
+ cleaner = getattr(cleaners, name)
65
+ if not cleaner:
66
+ raise Exception('Unknown cleaner: %s' % name)
67
+ text = cleaner(text)
68
+ return text
text/cleaners.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Cleaners are transformations that run over the input text at both training and eval time.
5
+ Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
6
+ hyperparameter. Some cleaners are English-specific. You'll typically want to use:
7
+ 1. "english_cleaners" for English text
8
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
9
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
10
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
11
+ the symbols in symbols.py to match your data).
12
+ '''
13
+
14
+ import re
15
+ from unidecode import unidecode
16
+ from unicodedata import normalize
17
+
18
+ from .numbers import normalize_numbers
19
+
20
+
21
+ # Regular expression matching whitespace:
22
+ _whitespace_re = re.compile(r'\s+')
23
+
24
+ # List of (regular expression, replacement) pairs for abbreviations:
25
+ _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
26
+ ('mrs', 'misess'),
27
+ ('mr', 'mister'),
28
+ ('dr', 'doctor'),
29
+ ('st', 'saint'),
30
+ ('co', 'company'),
31
+ ('jr', 'junior'),
32
+ ('maj', 'major'),
33
+ ('gen', 'general'),
34
+ ('drs', 'doctors'),
35
+ ('rev', 'reverend'),
36
+ ('lt', 'lieutenant'),
37
+ ('hon', 'honorable'),
38
+ ('sgt', 'sergeant'),
39
+ ('capt', 'captain'),
40
+ ('esq', 'esquire'),
41
+ ('ltd', 'limited'),
42
+ ('col', 'colonel'),
43
+ ('ft', 'fort'),
44
+ ]]
45
+
46
+ _cht_norm = [(re.compile(r'[%s]' % x[0]), x[1]) for x in [
47
+ ('。.;', '.'),
48
+ (',、', ', '),
49
+ ('?', '?'),
50
+ ('!', '!'),
51
+ ('─‧', '-'),
52
+ ('…', '...'),
53
+ ('《》「」『』〈〉()', "'"),
54
+ (':︰', ':'),
55
+ (' ', ' ')
56
+ ]]
57
+
58
+ def expand_abbreviations(text):
59
+ for regex, replacement in _abbreviations:
60
+ text = re.sub(regex, replacement, text)
61
+ return text
62
+
63
+ def expand_numbers(text):
64
+ return normalize_numbers(text)
65
+
66
+ def lowercase(text):
67
+ return text.lower()
68
+
69
+ def collapse_whitespace(text):
70
+ return re.sub(_whitespace_re, ' ', text)
71
+
72
+ def convert_to_ascii(text):
73
+ return unidecode(text)
74
+
75
+ def english_cleaners(text):
76
+ '''Pipeline for English text, including abbreviation expansion.'''
77
+ text = convert_to_ascii(text)
78
+ #text = lowercase(text)
79
+ text = expand_numbers(text)
80
+ text = expand_abbreviations(text)
81
+ text = collapse_whitespace(text)
82
+ return text
83
+
84
+ def korean_cleaners(text):
85
+ '''Pipeline for Korean text, including collapses whitespace.'''
86
+ text = collapse_whitespace(text)
87
+ text = normalize('NFKD', text)
88
+ return text
89
+
text/numbers.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ import inflect
4
+ import re
5
+
6
+
7
+ _inflect = inflect.engine()
8
+ _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
9
+ _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
10
+ _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
11
+ _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
12
+ _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
13
+ _number_re = re.compile(r'[0-9]+')
14
+
15
+
16
+ def _remove_commas(m):
17
+ return m.group(1).replace(',', '')
18
+
19
+
20
+ def _expand_decimal_point(m):
21
+ return m.group(1).replace('.', ' point ')
22
+
23
+
24
+ def _expand_dollars(m):
25
+ match = m.group(1)
26
+ parts = match.split('.')
27
+ if len(parts) > 2:
28
+ return match + ' dollars' # Unexpected format
29
+ dollars = int(parts[0]) if parts[0] else 0
30
+ cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
31
+ if dollars and cents:
32
+ dollar_unit = 'dollar' if dollars == 1 else 'dollars'
33
+ cent_unit = 'cent' if cents == 1 else 'cents'
34
+ return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
35
+ elif dollars:
36
+ dollar_unit = 'dollar' if dollars == 1 else 'dollars'
37
+ return '%s %s' % (dollars, dollar_unit)
38
+ elif cents:
39
+ cent_unit = 'cent' if cents == 1 else 'cents'
40
+ return '%s %s' % (cents, cent_unit)
41
+ else:
42
+ return 'zero dollars'
43
+
44
+
45
+ def _expand_ordinal(m):
46
+ return _inflect.number_to_words(m.group(0))
47
+
48
+
49
+ def _expand_number(m):
50
+ num = int(m.group(0))
51
+ if num > 1000 and num < 3000:
52
+ if num == 2000:
53
+ return 'two thousand'
54
+ elif num > 2000 and num < 2010:
55
+ return 'two thousand ' + _inflect.number_to_words(num % 100)
56
+ elif num % 100 == 0:
57
+ return _inflect.number_to_words(num // 100) + ' hundred'
58
+ else:
59
+ return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
60
+ else:
61
+ return _inflect.number_to_words(num, andword='')
62
+
63
+
64
+ def normalize_numbers(text):
65
+ text = re.sub(_comma_number_re, _remove_commas, text)
66
+ text = re.sub(_pounds_re, r'\1 pounds', text)
67
+ text = re.sub(_dollars_re, _expand_dollars, text)
68
+ text = re.sub(_decimal_number_re, _expand_decimal_point, text)
69
+ text = re.sub(_ordinal_re, _expand_ordinal, text)
70
+ text = re.sub(_number_re, _expand_number, text)
71
+ return text
text/symbols.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _pad = '_'
2
+ _punc = ";:,.!?¡¿—-…«»'“”~() "
3
+
4
+ _jamo_leads = "".join([chr(_) for _ in range(0x1100, 0x1113)])
5
+ _jamo_vowels = "".join([chr(_) for _ in range(0x1161, 0x1176)])
6
+ _jamo_tails = "".join([chr(_) for _ in range(0x11A8, 0x11C3)])
7
+ _kor_characters = _jamo_leads + _jamo_vowels + _jamo_tails
8
+
9
+ _cmu_characters = [
10
+ 'AA', 'AE', 'AH',
11
+ 'AO', 'AW', 'AY',
12
+ 'B', 'CH', 'D', 'DH', 'EH', 'ER', 'EY',
13
+ 'F', 'G', 'HH', 'IH', 'IY',
14
+ 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OY',
15
+ 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UW',
16
+ 'V', 'W', 'Y', 'Z', 'ZH'
17
+ ]
18
+
19
+
20
+ lang_to_symbols = {
21
+ 'common': [_pad] + list(_punc),
22
+ 'ko_KR': list(_kor_characters),
23
+ 'en_US': _cmu_characters,
24
+ }
25
+
26
+ def lang_to_dict(lang):
27
+ symbol_lang = lang_to_symbols['common'] + lang_to_symbols[lang]
28
+ dict_lang = {s: i for i, s in enumerate(symbol_lang)}
29
+ return dict_lang
30
+
31
+ def lang_to_dict_inverse(lang):
32
+ symbol_lang = lang_to_symbols['common'] + lang_to_symbols[lang]
33
+ dict_lang = {i: s for i, s in enumerate(symbol_lang)}
34
+ return dict_lang
35
+
36
+ def symbol_len(lang):
37
+ symbol_lang = lang_to_symbols['common'] + lang_to_symbols[lang]
38
+ return len(symbol_lang)
transforms.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ import numpy as np
3
+ import torch
4
+ from torch.nn import functional as F
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE
23
+ ):
24
+
25
+ if tails is None:
26
+ spline_fn = rational_quadratic_spline
27
+ spline_kwargs = {}
28
+ else:
29
+ spline_fn = unconstrained_rational_quadratic_spline
30
+ spline_kwargs = {
31
+ 'tails': tails,
32
+ 'tail_bound': tail_bound
33
+ }
34
+
35
+ outputs, logabsdet = spline_fn(
36
+ inputs=inputs,
37
+ unnormalized_widths=unnormalized_widths,
38
+ unnormalized_heights=unnormalized_heights,
39
+ unnormalized_derivatives=unnormalized_derivatives,
40
+ inverse=inverse,
41
+ min_bin_width=min_bin_width,
42
+ min_bin_height=min_bin_height,
43
+ min_derivative=min_derivative,
44
+ **spline_kwargs
45
+ )
46
+ return outputs, logabsdet
47
+
48
+
49
+ def searchsorted(bin_locations, inputs, eps=1e-6):
50
+ bin_locations[..., -1] += eps
51
+ return torch.sum(
52
+ inputs[..., None] >= bin_locations,
53
+ dim=-1
54
+ ) - 1
55
+
56
+
57
+ def unconstrained_rational_quadratic_spline(
58
+ inputs,
59
+ unnormalized_widths,
60
+ unnormalized_heights,
61
+ unnormalized_derivatives,
62
+ inverse=False,
63
+ tails='linear',
64
+ tail_bound=1.,
65
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
66
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
67
+ min_derivative=DEFAULT_MIN_DERIVATIVE
68
+ ):
69
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
70
+ outside_interval_mask = ~inside_interval_mask
71
+
72
+ outputs = torch.zeros_like(inputs)
73
+ logabsdet = torch.zeros_like(inputs)
74
+
75
+ if tails == 'linear':
76
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
77
+ constant = np.log(np.exp(1 - min_derivative) - 1)
78
+ unnormalized_derivatives[..., 0] = constant
79
+ unnormalized_derivatives[..., -1] = constant
80
+
81
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
82
+ logabsdet[outside_interval_mask] = 0
83
+ else:
84
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
85
+
86
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
87
+ inputs=inputs[inside_interval_mask],
88
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
89
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
90
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
91
+ inverse=inverse,
92
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
93
+ min_bin_width=min_bin_width,
94
+ min_bin_height=min_bin_height,
95
+ min_derivative=min_derivative
96
+ )
97
+
98
+ return outputs, logabsdet
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0., right=1., bottom=0., top=1.,
107
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
108
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
109
+ min_derivative=DEFAULT_MIN_DERIVATIVE
110
+ ):
111
+ if torch.min(inputs) < left or torch.max(inputs) > right:
112
+ raise ValueError('Input to a transform is not within its domain')
113
+
114
+ num_bins = unnormalized_widths.shape[-1]
115
+
116
+ if min_bin_width * num_bins > 1.0:
117
+ raise ValueError('Minimal bin width too large for the number of bins')
118
+ if min_bin_height * num_bins > 1.0:
119
+ raise ValueError('Minimal bin height too large for the number of bins')
120
+
121
+ widths = F.softmax(unnormalized_widths, dim=-1)
122
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
123
+ cumwidths = torch.cumsum(widths, dim=-1)
124
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
125
+ cumwidths = (right - left) * cumwidths + left
126
+ cumwidths[..., 0] = left
127
+ cumwidths[..., -1] = right
128
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
129
+
130
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
131
+
132
+ heights = F.softmax(unnormalized_heights, dim=-1)
133
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
134
+ cumheights = torch.cumsum(heights, dim=-1)
135
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
136
+ cumheights = (top - bottom) * cumheights + bottom
137
+ cumheights[..., 0] = bottom
138
+ cumheights[..., -1] = top
139
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
140
+
141
+ if inverse:
142
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
143
+ else:
144
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
145
+
146
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
147
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
148
+
149
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
150
+ delta = heights / widths
151
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
152
+
153
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
154
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
155
+
156
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
157
+
158
+ if inverse:
159
+ a = (((inputs - input_cumheights) * (input_derivatives
160
+ + input_derivatives_plus_one
161
+ - 2 * input_delta)
162
+ + input_heights * (input_delta - input_derivatives)))
163
+ b = (input_heights * input_derivatives
164
+ - (inputs - input_cumheights) * (input_derivatives
165
+ + input_derivatives_plus_one
166
+ - 2 * input_delta))
167
+ c = - input_delta * (inputs - input_cumheights)
168
+
169
+ discriminant = b.pow(2) - 4 * a * c
170
+ assert (discriminant >= 0).all()
171
+
172
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
173
+ outputs = root * input_bin_widths + input_cumwidths
174
+
175
+ theta_one_minus_theta = root * (1 - root)
176
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
177
+ * theta_one_minus_theta)
178
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
179
+ + 2 * input_delta * theta_one_minus_theta
180
+ + input_derivatives * (1 - root).pow(2))
181
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
182
+
183
+ return outputs, -logabsdet
184
+ else:
185
+ theta = (inputs - input_cumwidths) / input_bin_widths
186
+ theta_one_minus_theta = theta * (1 - theta)
187
+
188
+ numerator = input_heights * (input_delta * theta.pow(2)
189
+ + input_derivatives * theta_one_minus_theta)
190
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
191
+ * theta_one_minus_theta)
192
+ outputs = input_cumheights + numerator / denominator
193
+
194
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
195
+ + 2 * input_delta * theta_one_minus_theta
196
+ + input_derivatives * (1 - theta).pow(2))
197
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
198
+
199
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from https://github.com/jaywalnut310/vits
2
+ import os
3
+ import sys
4
+ import logging
5
+ import subprocess
6
+ import torch
7
+ import numpy as np
8
+ from omegaconf import OmegaConf
9
+ from scipy.io.wavfile import read
10
+
11
+ MATPLOTLIB_FLAG = False
12
+
13
+ logging.basicConfig(
14
+ stream=sys.stdout,
15
+ level=logging.INFO,
16
+ format='[%(levelname)s|%(filename)s:%(lineno)s][%(asctime)s] >>> %(message)s'
17
+ )
18
+ logger = logging
19
+
20
+
21
+ def load_checkpoint(checkpoint_path, rank=0, model_g=None, model_d=None, optim_g=None, optim_d=None):
22
+ assert os.path.isfile(checkpoint_path)
23
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
24
+ iteration = checkpoint_dict['iteration']
25
+ learning_rate = checkpoint_dict['learning_rate']
26
+ config = checkpoint_dict['config']
27
+
28
+ if model_g is not None:
29
+ model_g, optim_g = load_model(
30
+ model_g,
31
+ checkpoint_dict['model_g'],
32
+ optim_g,
33
+ checkpoint_dict['optimizer_g'])
34
+
35
+ if model_d is not None:
36
+ model_d, optim_d = load_model(
37
+ model_d,
38
+ checkpoint_dict['model_d'],
39
+ optim_d,
40
+ checkpoint_dict['optimizer_d'])
41
+ if rank == 0:
42
+ logger.info(
43
+ "Loaded checkpoint '{}' (iteration {})".format(
44
+ checkpoint_path,
45
+ iteration
46
+ )
47
+ )
48
+ return model_g, model_d, optim_g, optim_d, learning_rate, iteration, config
49
+
50
+ def load_checkpoint_diffsize(checkpoint_path, rank=0, model_g=None, model_d=None):
51
+ assert os.path.isfile(checkpoint_path)
52
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
53
+ iteration = checkpoint_dict['iteration']
54
+ learning_rate = checkpoint_dict['learning_rate']
55
+ config = checkpoint_dict['config']
56
+
57
+ if model_g is not None:
58
+ model_g = load_model_diffsize(
59
+ model_g,
60
+ checkpoint_dict['model_g'])
61
+ if model_d is not None:
62
+ model_d = load_model_diffsize(
63
+ model_d,
64
+ checkpoint_dict['model_d'])
65
+ if rank == 0:
66
+ logger.info(
67
+ "Loaded checkpoint '{}' (iteration {})".format(
68
+ checkpoint_path,
69
+ iteration
70
+ )
71
+ )
72
+ del checkpoint_dict
73
+ return model_g, model_d, learning_rate, iteration, config
74
+
75
+ def load_model_diffsize(model, model_state_dict):
76
+ if hasattr(model, 'module'):
77
+ state_dict = model.module.state_dict()
78
+ else:
79
+ state_dict = model.state_dict()
80
+
81
+ for k, v in model_state_dict.items():
82
+ if k in state_dict and state_dict[k].size() == v.size():
83
+ state_dict[k] = v
84
+
85
+ if hasattr(model, 'module'):
86
+ model.module.load_state_dict(state_dict, strict=False)
87
+ else:
88
+ model.load_state_dict(state_dict, strict=False)
89
+
90
+ return model
91
+
92
+
93
+
94
+ def load_model(model, model_state_dict, optim, optim_state_dict):
95
+ if optim is not None:
96
+ optim.load_state_dict(optim_state_dict)
97
+
98
+ if hasattr(model, 'module'):
99
+ state_dict = model.module.state_dict()
100
+ else:
101
+ state_dict = model.state_dict()
102
+
103
+ for k, v in model_state_dict.items():
104
+ if k in state_dict and state_dict[k].size() == v.size():
105
+ state_dict[k] = v
106
+
107
+ if hasattr(model, 'module'):
108
+ model.module.load_state_dict(state_dict)
109
+ else:
110
+ model.load_state_dict(state_dict)
111
+
112
+ return model, optim
113
+
114
+
115
+ def save_checkpoint(net_g, optim_g, net_d, optim_d, hps, epoch, learning_rate, save_path):
116
+
117
+ def get_state_dict(model):
118
+ if hasattr(model, 'module'):
119
+ state_dict = model.module.state_dict()
120
+ else:
121
+ state_dict = model.state_dict()
122
+ return state_dict
123
+
124
+ torch.save({'model_g': get_state_dict(net_g),
125
+ 'model_d': get_state_dict(net_d),
126
+ 'optimizer_g': optim_g.state_dict(),
127
+ 'optimizer_d': optim_d.state_dict(),
128
+ 'config': str(hps),
129
+ 'iteration': epoch,
130
+ 'learning_rate': learning_rate}, save_path)
131
+
132
+
133
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
134
+ for k, v in scalars.items():
135
+ writer.add_scalar(k, v, global_step)
136
+ for k, v in histograms.items():
137
+ writer.add_histogram(k, v, global_step)
138
+ for k, v in images.items():
139
+ writer.add_image(k, v, global_step, dataformats='HWC')
140
+ for k, v in audios.items():
141
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
142
+
143
+
144
+ def plot_spectrogram_to_numpy(spectrogram):
145
+ global MATPLOTLIB_FLAG
146
+ if not MATPLOTLIB_FLAG:
147
+ import matplotlib
148
+ matplotlib.use("Agg")
149
+ MATPLOTLIB_FLAG = True
150
+ mpl_logger = logging.getLogger('matplotlib')
151
+ mpl_logger.setLevel(logging.WARNING)
152
+ import matplotlib.pylab as plt
153
+ import numpy as np
154
+
155
+ fig, ax = plt.subplots(figsize=(10, 2))
156
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
157
+ interpolation='none')
158
+ plt.colorbar(im, ax=ax)
159
+ plt.xlabel("Frames")
160
+ plt.ylabel("Channels")
161
+ plt.tight_layout()
162
+
163
+ fig.canvas.draw()
164
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
165
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
166
+ plt.close()
167
+ return data
168
+
169
+
170
+ def plot_alignment_to_numpy(alignment, info=None):
171
+ global MATPLOTLIB_FLAG
172
+ if not MATPLOTLIB_FLAG:
173
+ import matplotlib
174
+ matplotlib.use("Agg")
175
+ MATPLOTLIB_FLAG = True
176
+ mpl_logger = logging.getLogger('matplotlib')
177
+ mpl_logger.setLevel(logging.WARNING)
178
+ import matplotlib.pylab as plt
179
+ import numpy as np
180
+
181
+ fig, ax = plt.subplots(figsize=(6, 4))
182
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
183
+ interpolation='none')
184
+ fig.colorbar(im, ax=ax)
185
+ xlabel = 'Decoder timestep'
186
+ if info is not None:
187
+ xlabel += '\n\n' + info
188
+ plt.xlabel(xlabel)
189
+ plt.ylabel('Encoder timestep')
190
+ plt.tight_layout()
191
+
192
+ fig.canvas.draw()
193
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
194
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
195
+ plt.close()
196
+ return data
197
+
198
+
199
+ def load_wav_to_torch(full_path):
200
+ sampling_rate, wav = read(full_path)
201
+
202
+ if len(wav.shape) == 2:
203
+ wav = wav[:, 0]
204
+
205
+ if wav.dtype == np.int16:
206
+ wav = wav / 32768.0
207
+ elif wav.dtype == np.int32:
208
+ wav = wav / 2147483648.0
209
+ elif wav.dtype == np.uint8:
210
+ wav = (wav - 128) / 128.0
211
+ wav = wav.astype(np.float32)
212
+ return torch.FloatTensor(wav), sampling_rate
213
+
214
+
215
+ def load_filepaths_and_text(filename, split="|"):
216
+ with open(filename, encoding='utf-8') as f:
217
+ filepaths_and_text = [line.strip().split(split) for line in f]
218
+ return filepaths_and_text
219
+
220
+
221
+ def get_hparams(args, init=True):
222
+ config = OmegaConf.load(args.config)
223
+ hparams = HParams(**config)
224
+ model_dir = os.path.join(hparams.train.log_path, args.model)
225
+
226
+ if not os.path.exists(model_dir):
227
+ os.makedirs(model_dir)
228
+ hparams.model_name = args.model
229
+ hparams.model_dir = model_dir
230
+ config_save_path = os.path.join(model_dir, "config.yaml")
231
+
232
+ if init:
233
+ OmegaConf.save(config, config_save_path)
234
+
235
+ return hparams
236
+
237
+
238
+ def get_hparams_from_file(config_path):
239
+ config = OmegaConf.load(config_path)
240
+ hparams = HParams(**config)
241
+ return hparams
242
+
243
+
244
+ def check_git_hash(model_dir):
245
+ source_dir = os.path.dirname(os.path.realpath(__file__))
246
+ if not os.path.exists(os.path.join(source_dir, ".git")):
247
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
248
+ source_dir
249
+ ))
250
+ return
251
+
252
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
253
+
254
+ path = os.path.join(model_dir, "githash")
255
+ if os.path.exists(path):
256
+ saved_hash = open(path).read()
257
+ if saved_hash != cur_hash:
258
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
259
+ saved_hash[:8], cur_hash[:8]))
260
+ else:
261
+ open(path, "w").write(cur_hash)
262
+
263
+
264
+ def get_logger(model_dir, filename="train.log"):
265
+ global logger
266
+ logger = logging.getLogger(os.path.basename(model_dir))
267
+ logger.setLevel(logging.DEBUG)
268
+
269
+ formatter = logging.Formatter(
270
+ "%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
271
+ if not os.path.exists(model_dir):
272
+ os.makedirs(model_dir)
273
+ h = logging.FileHandler(os.path.join(model_dir, filename))
274
+ h.setLevel(logging.DEBUG)
275
+ h.setFormatter(formatter)
276
+ logger.addHandler(h)
277
+ return logger
278
+
279
+
280
+ class HParams():
281
+ def __init__(self, **kwargs):
282
+ for k, v in kwargs.items():
283
+ if type(v) == dict:
284
+ v = HParams(**v)
285
+ self[k] = v
286
+
287
+ def keys(self):
288
+ return self.__dict__.keys()
289
+
290
+ def items(self):
291
+ return self.__dict__.items()
292
+
293
+ def values(self):
294
+ return self.__dict__.values()
295
+
296
+ def __len__(self):
297
+ return len(self.__dict__)
298
+
299
+ def __getitem__(self, key):
300
+ return getattr(self, key)
301
+
302
+ def __setitem__(self, key, value):
303
+ return setattr(self, key, value)
304
+
305
+ def __contains__(self, key):
306
+ return key in self.__dict__
307
+
308
+ def __repr__(self):
309
+ return self.__dict__.__repr__()
yin.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # remove np from https://github.com/dhchoi99/NANSY/blob/master/models/yin.py
2
+ # adapted from https://github.com/patriceguyot/Yin
3
+ # https://github.com/NVIDIA/mellotron/blob/master/yin.py
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from math import log2, ceil
8
+
9
+
10
+ def differenceFunction(x, N, tau_max):
11
+ """
12
+ Compute difference function of data x. This corresponds to equation (6) in [1]
13
+ This solution is implemented directly with torch rfft.
14
+
15
+
16
+ :param x: audio data (Tensor)
17
+ :param N: length of data
18
+ :param tau_max: integration window size
19
+ :return: difference function
20
+ :rtype: list
21
+ """
22
+
23
+ #x = np.array(x, np.float64) #[B,T]
24
+ assert x.dim() == 2
25
+ b, w = x.shape
26
+ if w < tau_max:
27
+ x = F.pad(x, (tau_max - w - (tau_max - w) // 2, (tau_max - w) // 2),
28
+ 'constant',
29
+ mode='reflect')
30
+ w = tau_max
31
+ #x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
32
+ x_cumsum = torch.cat(
33
+ [torch.zeros([b, 1], device=x.device), (x * x).cumsum(dim=1)], dim=1)
34
+ size = w + tau_max
35
+ p2 = (size // 32).bit_length()
36
+ #p2 = ceil(log2(size+1 // 32))
37
+ nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
38
+ size_pad = min(n * 2**p2 for n in nice_numbers if n * 2**p2 >= size)
39
+ fc = torch.fft.rfft(x, size_pad) #[B,F]
40
+ conv = torch.fft.irfft(fc * fc.conj())[:, :tau_max]
41
+ return x_cumsum[:, w:w - tau_max:
42
+ -1] + x_cumsum[:, w] - x_cumsum[:, :tau_max] - 2 * conv
43
+
44
+
45
+ def differenceFunction_np(x, N, tau_max):
46
+ """
47
+ Compute difference function of data x. This corresponds to equation (6) in [1]
48
+ This solution is implemented directly with Numpy fft.
49
+
50
+
51
+ :param x: audio data
52
+ :param N: length of data
53
+ :param tau_max: integration window size
54
+ :return: difference function
55
+ :rtype: list
56
+ """
57
+
58
+ x = np.array(x, np.float64)
59
+ w = x.size
60
+ tau_max = min(tau_max, w)
61
+ x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
62
+ size = w + tau_max
63
+ p2 = (size // 32).bit_length()
64
+ nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
65
+ size_pad = min(x * 2**p2 for x in nice_numbers if x * 2**p2 >= size)
66
+ fc = np.fft.rfft(x, size_pad)
67
+ conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
68
+ return x_cumsum[w:w -
69
+ tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv
70
+
71
+
72
+ def cumulativeMeanNormalizedDifferenceFunction(df, N, eps=1e-8):
73
+ """
74
+ Compute cumulative mean normalized difference function (CMND).
75
+
76
+ This corresponds to equation (8) in [1]
77
+
78
+ :param df: Difference function
79
+ :param N: length of data
80
+ :return: cumulative mean normalized difference function
81
+ :rtype: list
82
+ """
83
+ #np.seterr(divide='ignore', invalid='ignore')
84
+ # scipy method, assert df>0 for all element
85
+ # cmndf = df[1:] * np.asarray(list(range(1, N))) / (np.cumsum(df[1:]).astype(float) + eps)
86
+ B, _ = df.shape
87
+ cmndf = df[:,
88
+ 1:] * torch.arange(1, N, device=df.device, dtype=df.dtype).view(
89
+ 1, -1) / (df[:, 1:].cumsum(dim=-1) + eps)
90
+ return torch.cat(
91
+ [torch.ones([B, 1], device=df.device, dtype=df.dtype), cmndf], dim=-1)
92
+
93
+
94
+ def differenceFunctionTorch(xs: torch.Tensor, N, tau_max) -> torch.Tensor:
95
+ """pytorch backend batch-wise differenceFunction
96
+ has 1e-4 level error with input shape of (32, 22050*1.5)
97
+ Args:
98
+ xs:
99
+ N:
100
+ tau_max:
101
+
102
+ Returns:
103
+
104
+ """
105
+ xs = xs.double()
106
+ w = xs.shape[-1]
107
+ tau_max = min(tau_max, w)
108
+ zeros = torch.zeros((xs.shape[0], 1))
109
+ x_cumsum = torch.cat((torch.zeros((xs.shape[0], 1), device=xs.device),
110
+ (xs * xs).cumsum(dim=-1, dtype=torch.double)),
111
+ dim=-1) # B x w
112
+ size = w + tau_max
113
+ p2 = (size // 32).bit_length()
114
+ nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
115
+ size_pad = min(x * 2**p2 for x in nice_numbers if x * 2**p2 >= size)
116
+
117
+ fcs = torch.fft.rfft(xs, n=size_pad, dim=-1)
118
+ convs = torch.fft.irfft(fcs * fcs.conj())[:, :tau_max]
119
+ y1 = torch.flip(x_cumsum[:, w - tau_max + 1:w + 1], dims=[-1])
120
+ y = y1 + x_cumsum[:, w].unsqueeze(-1) - x_cumsum[:, :tau_max] - 2 * convs
121
+ return y
122
+
123
+
124
+ def cumulativeMeanNormalizedDifferenceFunctionTorch(dfs: torch.Tensor,
125
+ N,
126
+ eps=1e-8) -> torch.Tensor:
127
+ arange = torch.arange(1, N, device=dfs.device, dtype=torch.float64)
128
+ cumsum = torch.cumsum(dfs[:, 1:], dim=-1,
129
+ dtype=torch.float64).to(dfs.device)
130
+
131
+ cmndfs = dfs[:, 1:] * arange / (cumsum + eps)
132
+ cmndfs = torch.cat(
133
+ (torch.ones(cmndfs.shape[0], 1, device=dfs.device), cmndfs), dim=-1)
134
+ return cmndfs
135
+
136
+
137
+ if __name__ == '__main__':
138
+ wav = torch.randn(32, int(22050 * 1.5)).cuda()
139
+ wav_numpy = wav.detach().cpu().numpy()
140
+ x = wav_numpy[0]
141
+
142
+ w_len = 2048
143
+ w_step = 256
144
+ tau_max = 2048
145
+ W = 2048
146
+
147
+ startFrames = list(range(0, x.shape[-1] - w_len, w_step))
148
+ startFrames = np.asarray(startFrames)
149
+ # times = startFrames / sr
150
+ frames = [x[..., t:t + W] for t in startFrames]
151
+ frames = np.asarray(frames)
152
+ frames_torch = torch.from_numpy(frames).cuda()
153
+
154
+ cmndfs0 = []
155
+ for idx, frame in enumerate(frames):
156
+ df = differenceFunction(frame, frame.shape[-1], tau_max)
157
+ cmndf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max)
158
+ cmndfs0.append(cmndf)
159
+ cmndfs0 = np.asarray(cmndfs0)
160
+
161
+ dfs = differenceFunctionTorch(frames_torch, frames_torch.shape[-1],
162
+ tau_max)
163
+ cmndfs1 = cumulativeMeanNormalizedDifferenceFunctionTorch(
164
+ dfs, tau_max).detach().cpu().numpy()
165
+ print(cmndfs0.shape, cmndfs1.shape)
166
+ print(np.sum(np.abs(cmndfs0 - cmndfs1)))