ans123 commited on
Commit
aa5530b
·
verified ·
1 Parent(s): f205342

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -14
app.py CHANGED
@@ -1,15 +1,14 @@
1
  import gradio as gr
2
  import pandas as pd
3
  import torch
4
- import transformers
5
 
6
- # Load the model pipeline
7
- model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
8
- pipeline = transformers.pipeline(
9
  "text-generation",
10
- model=model_id,
11
- model_kwargs={"torch_dtype": torch.bfloat16},
12
- device_map="auto",
13
  )
14
 
15
  # Define the initial system message
@@ -55,17 +54,15 @@ def chat(user_input, messages):
55
  messages.append({"role": "user", "content": user_input})
56
 
57
  # Prepare the input for the model
58
- input_text = messages.copy() # Make a copy of messages
59
 
60
  # Generate a response using the pipeline
61
  try:
62
- # Convert the messages to a format the model can understand
63
- formatted_input = "\n".join([f"{msg['role']}: {msg['content']}" for msg in input_text])
64
- response = pipeline(formatted_input, max_new_tokens=256)
65
 
66
  # Extract the assistant's response
67
- response_content = response[0]["generated_text"].strip()
68
-
69
  # Store assistant response in the chat history
70
  messages.append({"role": "assistant", "content": response_content})
71
 
@@ -77,7 +74,7 @@ def chat(user_input, messages):
77
 
78
  # Gradio Interface
79
  with gr.Blocks() as demo:
80
- gr.Markdown("## Fashion Assistant Chatbot")
81
 
82
  # Sidebar for user inputs
83
  with gr.Row():
 
1
  import gradio as gr
2
  import pandas as pd
3
  import torch
4
+ from transformers import pipeline
5
 
6
+ # Load the Zephyr-7B-Beta model pipeline
7
+ pipe = pipeline(
 
8
  "text-generation",
9
+ model="HuggingFaceH4/zephyr-7b-beta",
10
+ torch_dtype=torch.bfloat16,
11
+ device_map="auto"
12
  )
13
 
14
  # Define the initial system message
 
54
  messages.append({"role": "user", "content": user_input})
55
 
56
  # Prepare the input for the model
57
+ input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
58
 
59
  # Generate a response using the pipeline
60
  try:
61
+ response = pipe(input_text, max_new_tokens=256, return_full_text=False)
 
 
62
 
63
  # Extract the assistant's response
64
+ response_content = response[0]['generated_text'].strip()
65
+
66
  # Store assistant response in the chat history
67
  messages.append({"role": "assistant", "content": response_content})
68
 
 
74
 
75
  # Gradio Interface
76
  with gr.Blocks() as demo:
77
+ gr.Markdown("## FRIDAY")
78
 
79
  # Sidebar for user inputs
80
  with gr.Row():