File size: 27,624 Bytes
44f2ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import get_activation
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
from diffusers.models.lora import LoRACompatibleLinear

from .attention_processor import Attention

import math

@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
    def __init__(self, query_dim, context_dim, n_heads, d_head):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

    def forward(self, x, objs):
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
        attention_type: str = "default",
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)

        # 4. Fuser
        if attention_type == "gated" or attention_type == "gated-text-image":
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        # Notice that normalization is always applied before the real computation in the following blocks.

        if attention_mask is not None and not isinstance(attention_mask, list):
            if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]:
                tmp = attention_mask.clone()
                scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1]))
                try:
                    tmp = tmp.reshape(tmp.shape[0], 40, 72)
                except:
                    try:
                        tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT
                    except:
                        tmp = tmp.reshape(tmp.shape[0], 96, 96)
                tmp = tmp[:, ::scale_factor, ::scale_factor]
                tmp = tmp.reshape(tmp.shape[0], 1, -1)
                attention_mask = tmp
            
            if attention_mask is not None:
                tmp = attention_mask.clone()
                tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
                tmp = (1-tmp)        
                orig_attn_mask = attention_mask.clone()
            else: 
                # tmp = 0
                tmp =1
                orig_attn_mask = None

            if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
                # We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. 
                attention_mask_2d = attention_mask + attention_mask.permute(0,2,1) 
                # Get it back to original range. This step is optional tbh
                attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype)
                
                if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
                    tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background
                    tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
                    tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
                    attention_mask_2d = attention_mask_2d * tmp_attention
                    attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype)
                attention_mask = attention_mask_2d
        
        
        # Multiple objects
        elif attention_mask is not None and isinstance(attention_mask, list):
            if hidden_states.shape[1] != attention_mask[0].shape[-1]:
                new_attention_mask = []
                for attn_mask in attention_mask:
                    tmp = attn_mask.clone()
                    scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1]))
                    try:
                        tmp = tmp.reshape(tmp.shape[0], 40, 72)
                    except:
                        tmp = tmp.reshape(tmp.shape[0], 32, 32)
                    tmp = tmp[:, ::scale_factor, ::scale_factor]
                    tmp = tmp.reshape(tmp.shape[0], 1, -1)
                    new_attention_mask.append(tmp)
                attention_mask = new_attention_mask
                
            orig_attn_mask = []
            for attn_mask in attention_mask:
                tmp = attn_mask.clone()

                tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
                tmp = (1-tmp)

                orig_attn_mask.append(attn_mask.clone())           


            if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
                # We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. 
                attn_mask_2d = []
                for attn_mask in attention_mask:
                    attention_mask_2d = attn_mask + attn_mask.permute(0,2,1) 
                    # Get it back to original range. This step is optional tbh
                    attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype)
                    attn_mask_2d.append(attention_mask_2d)
                attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0)
                attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype)
                if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
                    tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well
                    tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
                    tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
                    attention_mask_2d = attention_mask_2d * tmp_attention
                    attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype)
                attention_mask = attention_mask_2d                                 

        else:
            tmp = 1
            orig_attn_mask = None            
        
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        
        # breakpoint()
            
        ## self-attention amongst fg
        attn_output = self.attn1(
            norm_hidden_states, # + tmp,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        

        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = attn_output + hidden_states

        if attention_mask is not None:
            tmp = 1-tmp

        # 2.5 GLIGEN Control
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
        # 2.5 ends

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp)
            )

            
            if encoder_attention_mask is None:
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )

            if encoder_attention_mask is not None:  # Encoder attention mask is not None
                
                if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
                    
                    if not isinstance(orig_attn_mask, list):
                        orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device)
                        encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1)
                        encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype)

                        inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype)
                        inverted_encoder_attention_mask[:,:,0] = -10000  # CLS token

                        inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype)
                        inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) 
                        
                        encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
                        encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype)

                        encoder_attention_mask = encoder_attention_mask_2d
                    else:
                        orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask]
                        encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)]
                        encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d]

                        inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype)    
                        inverted_encoder_attention_mask[:,:,0] = -10000  # CLS token

                        inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype)
                        inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) 

                        encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.)
                        encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
                        encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype)

                        encoder_attention_mask = encoder_attention_mask_2d
                                                
                    norm_hidden_states = (
                        self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
                    )
                    ## cross-attention amongst bg
                    attn_output = self.attn2(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states,
                        attention_mask=encoder_attention_mask,
                        **cross_attention_kwargs,
                    )

                    del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention
                    torch.cuda.empty_cache()

                    hidden_states = attn_output + hidden_states

                else:
                    norm_hidden_states2 = (
                        self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp))
                    )
                    encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device)
                    encoder_attention_mask2[:, :, 0] = -10000
                    attn_output2 = self.attn2(
                        norm_hidden_states2,
                        encoder_hidden_states=encoder_hidden_states,
                        attention_mask=encoder_attention_mask2,
                        **cross_attention_kwargs,
                    )

                    hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states
            else:
                hidden_states = attn_output*tmp + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
                [
                    self.ff(hid_slice, scale=lora_scale)
                    for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
                ],
                dim=self._chunk_dim,
            )
        else:
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states

        return hidden_states

class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states, scale: float = 1.0):
        for module in self.net:
            if isinstance(module, (LoRACompatibleLinear, GEGLU)):
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
        return hidden_states


class GELU(nn.Module):
    r"""
    GELU activation function with tanh approximation support with `approximate="tanh"`.
    """

    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
        self.approximate = approximate

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate, approximate=self.approximate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)

    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states, scale: float = 1.0):
        hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x