# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.activations import get_activation from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings from diffusers.models.lora import LoRACompatibleLinear from .attention_processor import Attention import math @maybe_allow_in_graph class GatedSelfAttentionDense(nn.Module): def __init__(self, query_dim, context_dim, n_heads, d_head): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, activation_fn="geglu") self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) self.enabled = True def forward(self, x, objs): if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x @maybe_allow_in_graph class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", final_dropout: bool = False, attention_type: str = "default", ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif self.use_ada_layer_norm_zero: self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) ) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) # 4. Fuser if attention_type == "gated" or attention_type == "gated-text-image": self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, **kwargs, ): # Notice that normalization is always applied before the real computation in the following blocks. if attention_mask is not None and not isinstance(attention_mask, list): if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]: tmp = attention_mask.clone() scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1])) try: tmp = tmp.reshape(tmp.shape[0], 40, 72) except: try: tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT except: tmp = tmp.reshape(tmp.shape[0], 96, 96) tmp = tmp[:, ::scale_factor, ::scale_factor] tmp = tmp.reshape(tmp.shape[0], 1, -1) attention_mask = tmp if attention_mask is not None: tmp = attention_mask.clone() tmp = tmp.view(tmp.shape[0], -1,1)/(-10000) tmp = (1-tmp) orig_attn_mask = attention_mask.clone() else: # tmp = 0 tmp =1 orig_attn_mask = None if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True: # We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. attention_mask_2d = attention_mask + attention_mask.permute(0,2,1) # Get it back to original range. This step is optional tbh attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype) if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background tmp_attention = tmp_attention + tmp_attention.permute(0,2,1) tmp_attention = torch.where(tmp_attention < 0., -10000, 0) attention_mask_2d = attention_mask_2d * tmp_attention attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype) attention_mask = attention_mask_2d # Multiple objects elif attention_mask is not None and isinstance(attention_mask, list): if hidden_states.shape[1] != attention_mask[0].shape[-1]: new_attention_mask = [] for attn_mask in attention_mask: tmp = attn_mask.clone() scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1])) try: tmp = tmp.reshape(tmp.shape[0], 40, 72) except: tmp = tmp.reshape(tmp.shape[0], 32, 32) tmp = tmp[:, ::scale_factor, ::scale_factor] tmp = tmp.reshape(tmp.shape[0], 1, -1) new_attention_mask.append(tmp) attention_mask = new_attention_mask orig_attn_mask = [] for attn_mask in attention_mask: tmp = attn_mask.clone() tmp = tmp.view(tmp.shape[0], -1,1)/(-10000) tmp = (1-tmp) orig_attn_mask.append(attn_mask.clone()) if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True: # We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. attn_mask_2d = [] for attn_mask in attention_mask: attention_mask_2d = attn_mask + attn_mask.permute(0,2,1) # Get it back to original range. This step is optional tbh attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype) attn_mask_2d.append(attention_mask_2d) attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0) attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype) if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well tmp_attention = tmp_attention + tmp_attention.permute(0,2,1) tmp_attention = torch.where(tmp_attention < 0., -10000, 0) attention_mask_2d = attention_mask_2d * tmp_attention attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype) attention_mask = attention_mask_2d else: tmp = 1 orig_attn_mask = None if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Retrieve lora scale. lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 # 2. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) # breakpoint() ## self-attention amongst fg attn_output = self.attn1( norm_hidden_states, # + tmp, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states if attention_mask is not None: tmp = 1-tmp # 2.5 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 2.5 ends # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp) ) if encoder_attention_mask is None: attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) if encoder_attention_mask is not None: # Encoder attention mask is not None if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: if not isinstance(orig_attn_mask, list): orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device) encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1) encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype) inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype) inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype) inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype) encoder_attention_mask = encoder_attention_mask_2d else: orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask] encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)] encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d] inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype) inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype) inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.) encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype) encoder_attention_mask = encoder_attention_mask_2d norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) ## cross-attention amongst bg attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention torch.cuda.empty_cache() hidden_states = attn_output + hidden_states else: norm_hidden_states2 = ( self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp)) ) encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device) encoder_attention_mask2[:, :, 0] = -10000 attn_output2 = self.attn2( norm_hidden_states2, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask2, **cross_attention_kwargs, ) hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states else: hidden_states = attn_output*tmp + hidden_states # 4. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size ff_output = torch.cat( [ self.ff(hid_slice, scale=lora_scale) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) ], dim=self._chunk_dim, ) else: ff_output = self.ff(norm_hidden_states, scale=lora_scale) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, ): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh") elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states, scale: float = 1.0): for module in self.net: if isinstance(module, (LoRACompatibleLinear, GEGLU)): hidden_states = module(hidden_states, scale) else: hidden_states = module(hidden_states) return hidden_states class GELU(nn.Module): r""" GELU activation function with tanh approximation support with `approximate="tanh"`. """ def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): super().__init__() self.proj = nn.Linear(dim_in, dim_out) self.approximate = approximate def gelu(self, gate): if gate.device.type != "mps": return F.gelu(gate, approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states = self.gelu(hidden_states) return hidden_states class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = LoRACompatibleLinear(dim_in, dim_out * 2) def gelu(self, gate): if gate.device.type != "mps": return F.gelu(gate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) def forward(self, hidden_states, scale: float = 1.0): hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1) return hidden_states * self.gelu(gate) class ApproximateGELU(nn.Module): """ The approximate form of Gaussian Error Linear Unit (GELU) For more details, see section 2: https://arxiv.org/abs/1606.08415 """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out) def forward(self, x): x = self.proj(x) return x * torch.sigmoid(1.702 * x) class AdaLayerNorm(nn.Module): """ Norm layer modified to incorporate timestep embeddings. """ def __init__(self, embedding_dim, num_embeddings): super().__init__() self.emb = nn.Embedding(num_embeddings, embedding_dim) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, embedding_dim * 2) self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) def forward(self, x, timestep): emb = self.linear(self.silu(self.emb(timestep))) scale, shift = torch.chunk(emb, 2) x = self.norm(x) * (1 + scale) + shift return x class AdaLayerNormZero(nn.Module): """ Norm layer adaptive layer norm zero (adaLN-Zero). """ def __init__(self, embedding_dim, num_embeddings): super().__init__() self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) def forward(self, x, timestep, class_labels, hidden_dtype=None): emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class AdaGroupNorm(nn.Module): """ GroupNorm layer modified to incorporate timestep embeddings. """ def __init__( self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 ): super().__init__() self.num_groups = num_groups self.eps = eps if act_fn is None: self.act = None else: self.act = get_activation(act_fn) self.linear = nn.Linear(embedding_dim, out_dim * 2) def forward(self, x, emb): if self.act: emb = self.act(emb) emb = self.linear(emb) emb = emb[:, :, None, None] scale, shift = emb.chunk(2, dim=1) x = F.group_norm(x, self.num_groups, eps=self.eps) x = x * (1 + scale) + shift return x