# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional import torch from torch import nn import math from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput from diffusers.models.modeling_utils import ModelMixin from .attention import BasicTransformerBlock @dataclass class TransformerTemporalModelOutput(BaseOutput): """ The output of [`TransformerTemporalModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. """ sample: torch.FloatTensor class TransformerTemporalModel(ModelMixin, ConfigMixin): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. attention_bias (`bool`, *optional*): Configure if the `TransformerBlock` attention should contain a bias parameter. double_self_attention (`bool`, *optional*): Configure if each `TransformerBlock` should contain two self-attention layers. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, activation_fn: str = "geglu", norm_elementwise_affine: bool = True, double_self_attention: bool = True, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Linear(in_channels, inner_dim) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, double_self_attention=double_self_attention, norm_elementwise_affine=norm_elementwise_affine, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, class_labels=None, num_frames=1, cross_attention_kwargs=None, return_dict: bool = True, attention_mask=None, encoder_attention_mask=None, **kwargs, ): """ The [`TransformerTemporal`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input hidden_states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.long`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, channel, height, width = hidden_states.shape batch_size = batch_frames // num_frames if attention_mask is not None: if not isinstance(attention_mask, list): # Attn mask - (32, 1, 1024 new_attn_mask = attention_mask.clone() # Convert to (2,16,1024) new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2]) # spatial_dim_attn_mask = int(math.sqrt(new_attn_mask.shape[-1])) scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width))) mask_x = int(height * scaling_factor) mask_y = int(width * scaling_factor) # Scale the attention mask possibly new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor] # Convert to (2,16,64) new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1) # Convert to (128, 1, 16) when hidden states are (128, 16, 1280) new_attn_mask = new_attn_mask.reshape(-1,1,num_frames) # Trying to invert this mask, so that background is the only thing active - new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device) else: new_attn_mask_list = [] for attn_mask in attention_mask: new_attn_mask = attn_mask.clone() new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2]) scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width))) mask_x = int(height * scaling_factor) mask_y = int(width * scaling_factor) # Scale the attention mask possibly new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor] new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1) new_attn_mask = new_attn_mask.reshape(-1,1,num_frames) new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device) new_attn_mask_list.append(new_attn_mask) new_attn_mask = new_attn_mask_list else: new_attn_mask = None residual = hidden_states hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) hidden_states = self.norm(hidden_states) hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) hidden_states = self.proj_in(hidden_states) # 2. Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, attention_mask=new_attn_mask, encoder_attention_mask=encoder_attention_mask, # make_2d_attention_mask=True, # Check this # block_diagonal_attention=True, # TODO - Check this **kwargs, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states[None, None, :] .reshape(batch_size, height, width, channel, num_frames) .permute(0, 3, 4, 1, 2) .contiguous() ) hidden_states = hidden_states.reshape(batch_frames, channel, height, width) output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)