Spaces:
Running
Running
import json | |
import os | |
from datetime import datetime | |
from typing import ClassVar | |
# import dotenv | |
import lancedb | |
import srsly | |
from fasthtml.common import * # noqa | |
from fasthtml_hf import setup_hf_backup | |
from huggingface_hub import snapshot_download | |
from lancedb.embeddings.base import TextEmbeddingFunction | |
from lancedb.embeddings.registry import register | |
from lancedb.pydantic import LanceModel, Vector | |
from lancedb.rerankers import CohereReranker, ColbertReranker | |
from lancedb.util import attempt_import_or_raise | |
# dotenv.load_dotenv() | |
# download the zotero index (~1200 papers as of July 24, currently hosted on HF) ---- | |
def download_data(): | |
snapshot_download( | |
repo_id="rbiswasfc/zotero_db", | |
repo_type="dataset", | |
local_dir="./data", | |
token=os.environ["HF_TOKEN"], | |
) | |
print("Data downloaded!") | |
if not os.path.exists( | |
"./data/.lancedb_zotero_v0" | |
): # TODO: implement a better check / refresh mechanism | |
download_data() | |
# cohere embedding utils ---- | |
class CohereEmbeddingFunction_2(TextEmbeddingFunction): | |
name: str = "embed-english-v3.0" | |
client: ClassVar = None | |
def ndims(self): | |
return 768 | |
def generate_embeddings(self, texts): | |
""" | |
Get the embeddings for the given texts | |
Parameters | |
---------- | |
texts: list[str] or np.ndarray (of str) | |
The texts to embed | |
""" | |
# TODO retry, rate limit, token limit | |
self._init_client() | |
rs = CohereEmbeddingFunction_2.client.embed( | |
texts=texts, model=self.name, input_type="search_document" | |
) | |
return [emb for emb in rs.embeddings] | |
def _init_client(self): | |
cohere = attempt_import_or_raise("cohere") | |
if CohereEmbeddingFunction_2.client is None: | |
CohereEmbeddingFunction_2.client = cohere.Client( | |
os.environ["COHERE_API_KEY"] | |
) | |
COHERE_EMBEDDER = CohereEmbeddingFunction_2.create() | |
# LanceDB model ---- | |
class ArxivModel(LanceModel): | |
text: str = COHERE_EMBEDDER.SourceField() | |
vector: Vector(1024) = COHERE_EMBEDDER.VectorField() | |
title: str | |
paper_title: str | |
content_type: str | |
arxiv_id: str | |
VERSION = "0.0.0a" | |
DB = lancedb.connect("./data/.lancedb_zotero_v0") | |
ID_TO_ABSTRACT = srsly.read_json("./data/id_to_abstract.json") | |
RERANKERS = {"colbert": ColbertReranker(), "cohere": CohereReranker()} | |
TBL = DB.open_table("arxiv_zotero_v0") | |
# format results ---- | |
def _format_results(arxiv_refs): | |
results = [] | |
for arx_id, paper_title in arxiv_refs.items(): | |
abstract = ID_TO_ABSTRACT.get(arx_id, "") | |
# these are all ugly hacks because the data preprocessing is poor. to be fixed v soon. | |
if "Abstract\n\n" in abstract: | |
abstract = abstract.split("Abstract\n\n")[-1] | |
if paper_title in abstract: | |
abstract = abstract.split(paper_title)[-1] | |
if abstract.startswith("\n"): | |
abstract = abstract[1:] | |
if "\n\n" in abstract[:20]: | |
abstract = "\n\n".join(abstract.split("\n\n")[1:]) | |
result = { | |
"title": paper_title, | |
"url": f"https://arxiv.org/abs/{arx_id}", | |
"abstract": abstract, | |
} | |
results.append(result) | |
return results | |
# Search logic ---- | |
def query_db(query: str, k: int = 10, reranker: str = "cohere"): | |
raw_results = TBL.search(query, query_type="hybrid").limit(k) | |
if reranker is not None: | |
ranked_results = raw_results.rerank(reranker=RERANKERS[reranker]) | |
else: | |
ranked_results = raw_results | |
ranked_results = ranked_results.to_pandas() | |
top_results = ranked_results.groupby("arxiv_id").agg({"_relevance_score": "sum"}) | |
top_results = top_results.sort_values(by="_relevance_score", ascending=False).head( | |
3 | |
) | |
top_results_dict = { | |
row["arxiv_id"]: row["paper_title"] | |
for index, row in ranked_results.iterrows() | |
if row["arxiv_id"] in top_results.index | |
} | |
final_results = _format_results(top_results_dict) | |
return final_results | |
########################################################################### | |
# FastHTML app ----- | |
########################################################################### | |
style = Style(""" | |
:root { | |
color-scheme: dark; | |
} | |
body { | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 20px; | |
line-height: 1.6; | |
} | |
#query { | |
width: 100%; | |
margin-bottom: 1rem; | |
} | |
#search-form button { | |
width: 100%; | |
} | |
#search-results, #log-entries { | |
margin-top: 2rem; | |
} | |
.log-entry { | |
border: 1px solid #ccc; | |
padding: 10px; | |
margin-bottom: 10px; | |
} | |
.log-entry pre { | |
white-space: pre-wrap; | |
word-wrap: break-word; | |
} | |
.htmx-indicator { | |
display: none; | |
} | |
.htmx-request .htmx-indicator { | |
display: inline-block; | |
} | |
.spinner { | |
display: inline-block; | |
width: 2.5em; | |
height: 2.5em; | |
border: 0.3em solid rgba(255,255,255,.3); | |
border-radius: 50%; | |
border-top-color: #fff; | |
animation: spin 1s ease-in-out infinite; | |
margin-left: 10px; | |
vertical-align: middle; | |
} | |
@keyframes spin { | |
to { transform: rotate(360deg); } | |
} | |
.searching-text { | |
font-size: 1.2em; | |
font-weight: bold; | |
color: #fff; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
""") | |
# get the fast app and route | |
app, rt = fast_app(live=True, hdrs=(style,)) | |
# Initialize a database to store search logs -- | |
db = database("log_data/search_logs.db") | |
search_logs = db.t.search_logs | |
if search_logs not in db.t: | |
search_logs.create( | |
id=int, | |
timestamp=str, | |
query=str, | |
results=str, | |
pk="id", | |
) | |
SearchLog = search_logs.dataclass() | |
def insert_log_entry(log_entry): | |
"Insert a log entry into the database" | |
return search_logs.insert( | |
SearchLog( | |
timestamp=log_entry["timestamp"].isoformat(), | |
query=log_entry["query"], | |
results=json.dumps(log_entry["results"]), | |
) | |
) | |
async def get(): | |
query_form = Form( | |
Textarea(id="query", name="query", placeholder="Enter your query..."), | |
Button("Submit", type="submit"), | |
Div( | |
Span("Searching...", cls="searching-text htmx-indicator"), | |
Span(cls="spinner htmx-indicator"), | |
cls="indicator-container", | |
), | |
id="search-form", | |
hx_post="/search", | |
hx_target="#search-results", | |
hx_indicator=".indicator-container", | |
) | |
# results_div = Div(H2("Search Results"), Div(id="search-results", cls="results-container")) | |
results_div = Div(Div(id="search-results", cls="results-container")) | |
view_logs_link = A("View Logs", href="/logs", cls="view-logs-link") | |
return Titled( | |
"Zotero Search", Div(query_form, results_div, view_logs_link, cls="container") | |
) | |
def SearchResult(result): | |
"Custom component for displaying a search result" | |
return Card( | |
H4(A(result["title"], href=result["url"], target="_blank")), | |
P(result["abstract"]), | |
footer=A("Read more →", href=result["url"], target="_blank"), | |
) | |
def log_query_and_results(query, results): | |
log_entry = { | |
"timestamp": datetime.now(), | |
"query": query, | |
"results": [{"title": r["title"], "url": r["url"]} for r in results], | |
} | |
insert_log_entry(log_entry) | |
async def post(query: str): | |
results = query_db(query) | |
log_query_and_results(query, results) | |
return Div(*[SearchResult(r) for r in results], id="search-results") | |
def LogEntry(entry): | |
return Div( | |
H4(f"Query: {entry.query}"), | |
P(f"Timestamp: {entry.timestamp}"), | |
H5("Results:"), | |
Pre(entry.results), | |
cls="log-entry", | |
) | |
async def get(): | |
logs = search_logs(order_by="-id", limit=50) # Get the latest 50 logs | |
log_entries = [LogEntry(log) for log in logs] | |
return Titled( | |
"Logs", | |
Div( | |
H2("Recent Search Logs"), | |
Div(*log_entries, id="log-entries"), | |
A("Back to Search", href="/", cls="back-link"), | |
cls="container", | |
), | |
) | |
if __name__ == "__main__": | |
import uvicorn | |
setup_hf_backup(app) | |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860))) | |
# run_uv() | |