Spaces:
Running
Running
app
Browse files- Dockerfile +11 -0
- app.py +276 -0
- favicon.ico +0 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY ./app.py /code/
|
10 |
+
|
11 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime
|
4 |
+
from typing import ClassVar
|
5 |
+
|
6 |
+
# import dotenv
|
7 |
+
import lancedb
|
8 |
+
import srsly
|
9 |
+
from fasthtml.common import * # noqa
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
+
from lancedb.embeddings.base import TextEmbeddingFunction
|
12 |
+
from lancedb.embeddings.registry import register
|
13 |
+
from lancedb.pydantic import LanceModel, Vector
|
14 |
+
from lancedb.rerankers import CohereReranker, ColbertReranker
|
15 |
+
from lancedb.util import attempt_import_or_raise
|
16 |
+
|
17 |
+
# dotenv.load_dotenv()
|
18 |
+
|
19 |
+
|
20 |
+
# download the zotero index (~1200 papers as of July 24, currently hosted on HF) ----
|
21 |
+
def download_data():
|
22 |
+
snapshot_download(
|
23 |
+
repo_id="rbiswasfc/zotero_db",
|
24 |
+
repo_type="dataset",
|
25 |
+
local_dir="./data",
|
26 |
+
token=os.environ["HF_TOKEN"],
|
27 |
+
)
|
28 |
+
print("Data downloaded!")
|
29 |
+
|
30 |
+
|
31 |
+
if not os.path.exists(
|
32 |
+
"./data/.lancedb_zotero_v0"
|
33 |
+
): # TODO: implement a better check / refresh mechanism
|
34 |
+
download_data()
|
35 |
+
|
36 |
+
|
37 |
+
# cohere embedding utils ----
|
38 |
+
@register("coherev3")
|
39 |
+
class CohereEmbeddingFunction_2(TextEmbeddingFunction):
|
40 |
+
name: str = "embed-english-v3.0"
|
41 |
+
client: ClassVar = None
|
42 |
+
|
43 |
+
def ndims(self):
|
44 |
+
return 768
|
45 |
+
|
46 |
+
def generate_embeddings(self, texts):
|
47 |
+
"""
|
48 |
+
Get the embeddings for the given texts
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
texts: list[str] or np.ndarray (of str)
|
52 |
+
The texts to embed
|
53 |
+
"""
|
54 |
+
# TODO retry, rate limit, token limit
|
55 |
+
self._init_client()
|
56 |
+
rs = CohereEmbeddingFunction_2.client.embed(
|
57 |
+
texts=texts, model=self.name, input_type="search_document"
|
58 |
+
)
|
59 |
+
|
60 |
+
return [emb for emb in rs.embeddings]
|
61 |
+
|
62 |
+
def _init_client(self):
|
63 |
+
cohere = attempt_import_or_raise("cohere")
|
64 |
+
if CohereEmbeddingFunction_2.client is None:
|
65 |
+
CohereEmbeddingFunction_2.client = cohere.Client(
|
66 |
+
os.environ["COHERE_API_KEY"]
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
COHERE_EMBEDDER = CohereEmbeddingFunction_2.create()
|
71 |
+
|
72 |
+
|
73 |
+
# LanceDB model ----
|
74 |
+
class ArxivModel(LanceModel):
|
75 |
+
text: str = COHERE_EMBEDDER.SourceField()
|
76 |
+
vector: Vector(1024) = COHERE_EMBEDDER.VectorField()
|
77 |
+
title: str
|
78 |
+
paper_title: str
|
79 |
+
content_type: str
|
80 |
+
arxiv_id: str
|
81 |
+
|
82 |
+
|
83 |
+
VERSION = "0.0.0a"
|
84 |
+
DB = lancedb.connect("./data/.lancedb_zotero_v0")
|
85 |
+
ID_TO_ABSTRACT = srsly.read_json("./data/id_to_abstract.json")
|
86 |
+
RERANKERS = {"colbert": ColbertReranker(), "cohere": CohereReranker()}
|
87 |
+
TBL = DB.open_table("arxiv_zotero_v0")
|
88 |
+
|
89 |
+
|
90 |
+
# format results ----
|
91 |
+
def _format_results(arxiv_refs):
|
92 |
+
results = []
|
93 |
+
for arx_id, paper_title in arxiv_refs.items():
|
94 |
+
abstract = ID_TO_ABSTRACT.get(arx_id, "")
|
95 |
+
# these are all ugly hacks because the data preprocessing is poor. to be fixed v soon.
|
96 |
+
if "Abstract\n\n" in abstract:
|
97 |
+
abstract = abstract.split("Abstract\n\n")[-1]
|
98 |
+
if paper_title in abstract:
|
99 |
+
abstract = abstract.split(paper_title)[-1]
|
100 |
+
if abstract.startswith("\n"):
|
101 |
+
abstract = abstract[1:]
|
102 |
+
if "\n\n" in abstract[:20]:
|
103 |
+
abstract = "\n\n".join(abstract.split("\n\n")[1:])
|
104 |
+
result = {
|
105 |
+
"title": paper_title,
|
106 |
+
"url": f"https://arxiv.org/abs/{arx_id}",
|
107 |
+
"abstract": abstract,
|
108 |
+
}
|
109 |
+
results.append(result)
|
110 |
+
|
111 |
+
return results
|
112 |
+
|
113 |
+
|
114 |
+
# Search logic ----
|
115 |
+
def query_db(query: str, k: int = 10, reranker: str = "cohere"):
|
116 |
+
raw_results = TBL.search(query, query_type="hybrid").limit(k)
|
117 |
+
if reranker is not None:
|
118 |
+
ranked_results = raw_results.rerank(reranker=RERANKERS[reranker])
|
119 |
+
else:
|
120 |
+
ranked_results = raw_results
|
121 |
+
|
122 |
+
ranked_results = ranked_results.to_pandas()
|
123 |
+
top_results = ranked_results.groupby("arxiv_id").agg({"_relevance_score": "sum"})
|
124 |
+
top_results = top_results.sort_values(by="_relevance_score", ascending=False).head(
|
125 |
+
3
|
126 |
+
)
|
127 |
+
top_results_dict = {
|
128 |
+
row["arxiv_id"]: row["paper_title"]
|
129 |
+
for index, row in ranked_results.iterrows()
|
130 |
+
if row["arxiv_id"] in top_results.index
|
131 |
+
}
|
132 |
+
|
133 |
+
final_results = _format_results(top_results_dict)
|
134 |
+
return final_results
|
135 |
+
|
136 |
+
|
137 |
+
###########################################################################
|
138 |
+
# FastHTML app -----
|
139 |
+
###########################################################################
|
140 |
+
|
141 |
+
style = Style(
|
142 |
+
"""
|
143 |
+
:root {
|
144 |
+
color-scheme: dark;
|
145 |
+
}
|
146 |
+
body {
|
147 |
+
max-width: 1200px;
|
148 |
+
margin: 0 auto;
|
149 |
+
padding: 20px;
|
150 |
+
line-height: 1.6;
|
151 |
+
}
|
152 |
+
#query {
|
153 |
+
width: 100%;
|
154 |
+
margin-bottom: 1rem;
|
155 |
+
}
|
156 |
+
#search-form button {
|
157 |
+
width: 100%;
|
158 |
+
}
|
159 |
+
#search-results, #log-entries {
|
160 |
+
margin-top: 2rem;
|
161 |
+
}
|
162 |
+
.log-entry {
|
163 |
+
border: 1px solid #ccc;
|
164 |
+
padding: 10px;
|
165 |
+
margin-bottom: 10px;
|
166 |
+
}
|
167 |
+
.log-entry pre {
|
168 |
+
white-space: pre-wrap;
|
169 |
+
word-wrap: break-word;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
# get the fast app and route
|
175 |
+
app, rt = fast_app(live=True, hdrs=(style,))
|
176 |
+
|
177 |
+
# Initialize a database to store search logs --
|
178 |
+
db = database("data/search_logs.db")
|
179 |
+
search_logs = db.t.search_logs
|
180 |
+
if search_logs not in db.t:
|
181 |
+
search_logs.create(
|
182 |
+
id=int,
|
183 |
+
timestamp=str,
|
184 |
+
query=str,
|
185 |
+
results=str,
|
186 |
+
pk="id",
|
187 |
+
)
|
188 |
+
SearchLog = search_logs.dataclass()
|
189 |
+
|
190 |
+
|
191 |
+
def insert_log_entry(log_entry):
|
192 |
+
"Insert a log entry into the database"
|
193 |
+
return search_logs.insert(
|
194 |
+
SearchLog(
|
195 |
+
timestamp=log_entry["timestamp"].isoformat(),
|
196 |
+
query=log_entry["query"],
|
197 |
+
results=json.dumps(log_entry["results"]),
|
198 |
+
)
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
@rt("/")
|
203 |
+
async def get():
|
204 |
+
query_form = Form(
|
205 |
+
Textarea(id="query", name="query", placeholder="Enter your query..."),
|
206 |
+
Button("Submit", type="submit"),
|
207 |
+
id="search-form",
|
208 |
+
hx_post="/search",
|
209 |
+
hx_target="#search-results",
|
210 |
+
)
|
211 |
+
|
212 |
+
# results_div = Div(H2("Search Results"), Div(id="search-results", cls="results-container"))
|
213 |
+
results_div = Div(Div(id="search-results", cls="results-container"))
|
214 |
+
|
215 |
+
view_logs_link = A("View Logs", href="/logs", cls="view-logs-link")
|
216 |
+
|
217 |
+
return Titled(
|
218 |
+
"Zotero Search", Div(query_form, results_div, view_logs_link, cls="container")
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
def SearchResult(result):
|
223 |
+
"Custom component for displaying a search result"
|
224 |
+
return Card(
|
225 |
+
H4(A(result["title"], href=result["url"], target="_blank")),
|
226 |
+
P(result["abstract"]),
|
227 |
+
footer=A("Read more →", href=result["url"], target="_blank"),
|
228 |
+
)
|
229 |
+
|
230 |
+
|
231 |
+
def log_query_and_results(query, results):
|
232 |
+
log_entry = {
|
233 |
+
"timestamp": datetime.now(),
|
234 |
+
"query": query,
|
235 |
+
"results": [{"title": r["title"], "url": r["url"]} for r in results],
|
236 |
+
}
|
237 |
+
insert_log_entry(log_entry)
|
238 |
+
|
239 |
+
|
240 |
+
@rt("/search")
|
241 |
+
async def post(query: str):
|
242 |
+
results = query_db(query)
|
243 |
+
log_query_and_results(query, results)
|
244 |
+
|
245 |
+
return Div(*[SearchResult(r) for r in results], id="search-results")
|
246 |
+
|
247 |
+
|
248 |
+
def LogEntry(entry):
|
249 |
+
return Div(
|
250 |
+
H4(f"Query: {entry.query}"),
|
251 |
+
P(f"Timestamp: {entry.timestamp}"),
|
252 |
+
H5("Results:"),
|
253 |
+
Pre(entry.results),
|
254 |
+
cls="log-entry",
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
@rt("/logs")
|
259 |
+
async def get():
|
260 |
+
logs = search_logs(order_by="-id", limit=50) # Get the latest 50 logs
|
261 |
+
log_entries = [LogEntry(log) for log in logs]
|
262 |
+
return Titled(
|
263 |
+
"Logs",
|
264 |
+
Div(
|
265 |
+
H2("Recent Search Logs"),
|
266 |
+
Div(*log_entries, id="log-entries"),
|
267 |
+
A("Back to Search", href="/", cls="back-link"),
|
268 |
+
cls="container",
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
import uvicorn
|
275 |
+
|
276 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|
favicon.ico
ADDED
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-fasthtml
|
2 |
+
uvicorn>=0.29
|
3 |
+
lancedb
|
4 |
+
srsly
|
5 |
+
cohere
|
6 |
+
python-dotenv
|
7 |
+
tantivy
|
8 |
+
beautifulsoup4
|
9 |
+
retry
|
10 |
+
transformers
|
11 |
+
torch
|