Spaces:
Sleeping
Sleeping
File size: 9,357 Bytes
f0c7f30 8e97bca f0c7f30 4d2d919 f0c7f30 8e97bca f0c7f30 52b731a f0c7f30 52b731a f0c7f30 8e97bca f0c7f30 8e97bca 52b731a 4d2d919 f0c7f30 8e97bca f0c7f30 3aba82e f0c7f30 8e97bca f0c7f30 3aba82e f0c7f30 3aba82e 8e97bca 657b752 8e97bca 657b752 8e97bca a14cb14 8e97bca a14cb14 8e97bca 3aba82e 8e97bca f0c7f30 52b731a f0c7f30 52b731a f0c7f30 8e97bca a67a3ad f0c7f30 8e97bca a14cb14 8e97bca a14cb14 8e97bca f0c7f30 52b731a f0c7f30 52b731a d2071ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import base64
import io
import os
import shutil
from collections import defaultdict
from datetime import date, datetime, timedelta
from functools import lru_cache
import dotenv
import matplotlib.pyplot as plt
import seaborn as sns
from datasets import load_dataset
from dateutil.parser import parse
from dateutil.tz import tzutc
from fasthtml.common import *
from fh_matplotlib import matplotlib2fasthtml
from huggingface_hub import login, whoami
dotenv.load_dotenv()
login(token=os.environ.get("HF_TOKEN"))
PLACEHOLDER_IMAGE = (
""
)
# delete data folder
if os.path.exists("data"):
try:
shutil.rmtree("data")
except OSError as e:
print("Error: %s : %s" % ("data", e.strerror))
@lru_cache(maxsize=None)
def load_cached_dataset(repo_id, dataset_name, split):
return load_dataset(repo_id, dataset_name, split=split)
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
HF_REPO_ID_TXT = f"{hf_user}/zotero-answer-ai-texts"
HF_REPO_ID_IMG = f"{hf_user}/zotero-answer-ai-images"
abstract_ds = load_cached_dataset(HF_REPO_ID_TXT, "abstracts", "train")
article_ds = load_cached_dataset(HF_REPO_ID_TXT, "articles", "train")
image_ds = load_cached_dataset(HF_REPO_ID_IMG, "images_first_page", "train")
def parse_date(date_string):
try:
return parse(date_string).astimezone(tzutc()).date()
except ValueError:
return date.today()
def get_week_start(date_obj):
return date_obj - timedelta(days=date_obj.weekday())
week2articles = defaultdict(list)
for article in article_ds:
date_added = parse_date(article["date_added"])
week_start = get_week_start(date_added)
week2articles[week_start].append(article["arxiv_id"])
weeks = sorted(week2articles.keys(), reverse=True)
arxiv2article = {article["arxiv_id"]: article for article in article_ds}
arxiv2abstract = {abstract["arxiv_id"]: abstract for abstract in abstract_ds}
arxiv2image = {image["arxiv_id"]: image for image in image_ds}
def get_article_details(arxiv_id):
article = arxiv2article.get(arxiv_id, {})
# abstract = arxiv2abstract.get(arxiv_id, {})
# image = arxiv2image.get(arxiv_id, {})
return article
# stats --
@matplotlib2fasthtml
def generate_chart():
end_date = max(weeks)
start_date = end_date - timedelta(weeks=23)
dates = []
counts = []
current_date = start_date
while current_date <= end_date:
count = len(week2articles[current_date])
date_str = current_date.strftime("%d-%B-%Y")
dates.append(date_str)
counts.append(count)
current_date += timedelta(weeks=1)
plt.figure(figsize=(12, 6))
sns.set_style("darkgrid")
# sns.set_palette("deep")
ax = sns.barplot(x=dates, y=counts)
plt.title("Papers per Week (Last 24 Weeks)", fontsize=16, fontweight="bold")
plt.xlabel("Week", fontsize=12)
plt.ylabel("Number of Papers", fontsize=12)
# Rotate and align the tick labels so they look better
plt.xticks(rotation=45, ha="right")
# Use a tight layout to prevent the labels from being cut off
plt.tight_layout()
# Add value labels on top of each bar
for i, v in enumerate(counts):
ax.text(i, v + 0.5, str(v), ha="center", va="bottom")
# Increase y-axis limit slightly to accommodate the value labels
plt.ylim(0, max(counts) * 1.1)
@matplotlib2fasthtml
def generate_contributions_chart():
article_df = article_ds.data.to_pandas()
added_by_df = article_df.groupby("added_by").size().reset_index(name="count")
added_by_df = added_by_df.sort_values("count", ascending=False) # Ascending for bottom-to-top order
plt.figure(figsize=(12, 8))
sns.set_style("darkgrid")
sns.set_palette("deep")
ax = sns.barplot(x="count", y="added_by", data=added_by_df)
plt.title("Upload Counts", fontsize=16, fontweight="bold")
plt.xlabel("Number of Articles Added", fontsize=12)
plt.ylabel("User", fontsize=12)
# Add value labels to the end of each bar
for i, v in enumerate(added_by_df["count"]):
ax.text(v + 0.5, i, str(v), va="center")
# Adjust x-axis to make room for labels
plt.xlim(0, max(added_by_df["count"]) * 1.1)
plt.tight_layout()
# chart = Div(generate_chart(), id="chart")
bar_chart = Div(generate_chart(), id="bar-chart")
pie_chart = Div(generate_contributions_chart(), id="pie-chart")
#### fasthtml app ####
style = Style("""
.grid { margin-bottom: 1rem; }
.card { display: flex; flex-direction: column; }
.card img { margin-bottom: 0.5rem; width: 500px; height: 500px; object-fit: cover; }
.card img { margin-bottom: 0.5rem; }
.card h5 { margin: 0; font-size: 0.9rem; line-height: 1.2; }
.card a { color: inherit; text-decoration: none; }
.card a:hover { text-decoration: underline; }
.htmx-indicator { display: none; }
.htmx-request .htmx-indicator { display: inline; }
.htmx-request.htmx-indicator { display: inline; }
""")
app, rt = fast_app(html_style=(style,))
# Image ---
def optimize_image(pil_image, max_size=(500, 500), quality=85):
img_byte_arr = io.BytesIO()
pil_image.thumbnail(max_size)
pil_image.save(img_byte_arr, format="JPEG", quality=quality, optimize=True)
return f"data:image/jpeg;base64,{base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')}"
@lru_cache(maxsize=100)
def get_optimized_image(arxiv_id):
image = arxiv2image.get(arxiv_id, {})
if image:
return optimize_image(image["image"])
return None
@rt("/image/{arxiv_id}")
def get(arxiv_id: str):
image_url = get_optimized_image(arxiv_id)
if image_url:
return Img(src=image_url, alt="Article image", style="max-width: 100%; height: auto; margin-bottom: 15px;")
return ""
def generate_week_content(current_week):
week_index = weeks.index(current_week)
prev_week = weeks[week_index + 1] if week_index < len(weeks) - 1 else None
next_week = weeks[week_index - 1] if week_index > 0 else None
nav_buttons = Div(
Button(
"β Previous Week",
hx_get=f"/week/{prev_week}" if prev_week else "#",
hx_target="#content",
hx_swap="innerHTML",
disabled=not prev_week,
),
Button(
"Next Week β",
hx_get=f"/week/{next_week}" if next_week else "#",
hx_target="#content",
hx_swap="innerHTML",
disabled=not next_week,
),
A("View Stats", href="/stats", cls="button"),
)
articles = week2articles[current_week]
article_cards = []
for arxiv_id in articles:
article = get_article_details(arxiv_id)
article_title = article["contents"][0].get("paper_title", "article") if article["contents"] else "article"
card_content = [
H5(
A(
article_title,
href=f"https://arxiv.org/abs/{arxiv_id}",
target="_blank",
)
)
]
card_content.insert(
0,
Div(
Img(src=PLACEHOLDER_IMAGE, alt="Article image", style="width: 500px; height: 500px; object-fit: cover;"),
Img(
src="/static/loading.gif",
alt="Loading",
cls="htmx-indicator",
style="position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%);",
),
style="position: relative;",
hx_get=f"/image/{arxiv_id}",
hx_trigger="revealed",
hx_swap="innerHTML",
),
)
article_cards.append(Card(*card_content, cls="mb-4"))
grid = Grid(
*article_cards,
style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 1rem;",
)
week_end = current_week + timedelta(days=6)
return Div(
nav_buttons,
Br(),
H5(f"{current_week.strftime('%B %d')} - {week_end.strftime('%B %d, %Y')} ({len(articles)} articles)"),
Br(),
grid,
nav_buttons,
id="content",
)
@rt("/")
def get():
return Titled("AnswerAI Zotero Weekly", generate_week_content(weeks[0]))
@rt("/week/{date}")
def get(date: str):
try:
current_week = datetime.strptime(date, "%Y-%m-%d").date()
return generate_week_content(current_week)
except Exception as e:
return Div(f"Error displaying articles: {str(e)}")
@rt("/stats")
async def get():
# add contributions
article_df = article_ds.data.to_pandas()
added_by_df = article_df.groupby("added_by").size().reset_index(name="count")
added_by_df = added_by_df.sort_values("count", ascending=False)
return Titled(
"AnswerAI Zotero Stats",
H5("Papers per Week (Last 12 Weeks)"),
bar_chart,
Br(),
H5("Contributions by User"),
pie_chart,
Br(),
A("Back to Weekly View", href="/", cls="button"),
)
# serve()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|