Spaces:
Running
Running
File size: 11,098 Bytes
bd5481a ad1a271 5372186 bd5481a 5372186 a7d512d 85735f4 bd5481a ad1a271 bd5481a ad1a271 2d98254 ad1a271 a151084 03e299f e1188ac c659be1 a151084 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a ad1a271 bd5481a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi
DATASETS = [
"mMARCO-fr",
"BSARD",
]
SINGLE_VECTOR_MODELS = [
"antoinelouis/biencoder-camemberta-base-mmarcoFR",
"antoinelouis/biencoder-camembert-base-mmarcoFR",
"antoinelouis/biencoder-distilcamembert-mmarcoFR",
"antoinelouis/biencoder-camembert-L10-mmarcoFR",
"antoinelouis/biencoder-camembert-L8-mmarcoFR",
"antoinelouis/biencoder-camembert-L6-mmarcoFR",
"antoinelouis/biencoder-camembert-L4-mmarcoFR",
"antoinelouis/biencoder-camembert-L2-mmarcoFR",
"antoinelouis/biencoder-electra-base-mmarcoFR",
"antoinelouis/biencoder-mMiniLMv2-L12-mmarcoFR",
"antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR",
"antoinelouis/biencoder-mdebertav3-mmarcoFR",
"OrdalieTech/Solon-embeddings-large-0.1",
"OrdalieTech/Solon-embeddings-base-0.1",
]
MULTI_VECTOR_MODELS = [
"antoinelouis/colbertv1-camembert-base-mmarcoFR",
"antoinelouis/colbertv2-camembert-L4-mmarcoFR",
"antoinelouis/colbert-xm",
]
SPARSE_LEXICAL_MODELS = [
"antoinelouis/spladev2-camembert-base-mmarcoFR",
]
CROSS_ENCODER_MODELS = [
"antoinelouis/crossencoder-camemberta-L2-mmarcoFR",
"antoinelouis/crossencoder-camemberta-L4-mmarcoFR",
"antoinelouis/crossencoder-camemberta-L6-mmarcoFR",
"antoinelouis/crossencoder-camemberta-L8-mmarcoFR",
"antoinelouis/crossencoder-camemberta-L10-mmarcoFR",
"antoinelouis/crossencoder-camemberta-base-mmarcoFR",
"antoinelouis/crossencoder-camembert-L2-mmarcoFR",
"antoinelouis/crossencoder-camembert-L4-mmarcoFR",
"antoinelouis/crossencoder-camembert-L6-mmarcoFR",
"antoinelouis/crossencoder-camembert-L8-mmarcoFR",
"antoinelouis/crossencoder-camembert-L10-mmarcoFR",
"antoinelouis/crossencoder-camembert-base-mmarcoFR",
"antoinelouis/crossencoder-camembert-large-mmarcoFR",
"antoinelouis/crossencoder-distilcamembert-mmarcoFR",
"antoinelouis/crossencoder-electra-base-mmarcoFR",
"antoinelouis/crossencoder-me5-base-mmarcoFR",
"antoinelouis/crossencoder-me5-small-mmarcoFR",
"antoinelouis/crossencoder-t5-base-mmarcoFR",
"antoinelouis/crossencoder-t5-small-mmarcoFR",
"antoinelouis/crossencoder-mt5-base-mmarcoFR",
"antoinelouis/crossencoder-mt5-small-mmarcoFR",
"antoinelouis/crossencoder-xlm-roberta-base-mmarcoFR",
"antoinelouis/crossencoder-mdebertav3-base-mmarcoFR",
"antoinelouis/crossencoder-mMiniLMv2-L12-mmarcoFR",
"antoinelouis/crossencoder-mMiniLMv2-L6-mmarcoFR",
]
COLUMNS = {
"Model": "html",
"#Params (M)": "number",
"Type": "str",
"Dataset": "str",
"Recall@1000": "number",
"Recall@500": "number",
"Recall@100": "number",
"Recall@10": "number",
"MRR@10": "number",
"nDCG@10": "number",
"MAP@10": "number",
}
def get_model_info(model_id: str, model_type: str) -> pd.DataFrame:
data = {}
api = HfApi()
model_info = api.model_info(model_id)
for result in model_info.card_data.eval_results:
if result.dataset_name in DATASETS and result.dataset_name not in data:
data[result.dataset_name] = {key: None for key in COLUMNS.keys()}
data[result.dataset_name]["Model"] = f'<a href="https://huggingface.co/{model_id}" target="_blank" style="color: blue; text-decoration: none;">{model_id}</a>'
data[result.dataset_name]["#Params (M)"] = round(model_info.safetensors.total/1e6, 0) if model_info.safetensors else None
data[result.dataset_name]["Type"] = model_type
data[result.dataset_name]["Dataset"] = result.dataset_name
if result.dataset_name in DATASETS and result.metric_name in data[result.dataset_name]:
data[result.dataset_name][result.metric_name] = result.metric_value
return pd.DataFrame(list(data.values()))
def load_all_results() -> pd.DataFrame:
# Load results from external baseline models.
df = pd.read_csv('./baselines.csv')
# Load results from own Hugging Face models.
for model_id in SINGLE_VECTOR_MODELS:
df = pd.concat([df, get_model_info(model_id, model_type="SINGLE")])
for model_id in MULTI_VECTOR_MODELS:
df = pd.concat([df, get_model_info(model_id, model_type="MULTI")])
for model_id in SPARSE_LEXICAL_MODELS:
df = pd.concat([df, get_model_info(model_id, model_type="SPARSE")])
for model_id in CROSS_ENCODER_MODELS:
df = pd.concat([df, get_model_info(model_id, model_type="CROSS")])
# Round all metrics to 1 decimal.
for col in df.columns:
if "Recall" in col or "MRR" in col or "nDCG" in col or "MAP" in col:
df[col] = df[col].round(1)
return df
def filter_dataf_by_dataset(dataf: pd.DataFrame, dataset_name: str, sort_by: str) -> pd.DataFrame:
return (dataf
.loc[dataf["Dataset"] == dataset_name]
.drop(columns=["Dataset"])
.sort_values(by=sort_by, ascending=False)
)
def update_table(dataf: pd.DataFrame, query: str, selected_types: list, selected_sizes: list) -> pd.DataFrame:
filtered_df = dataf.copy()
if selected_types:
filtered_df = filtered_df[filtered_df['Type'].isin([t.split()[-1][1:-1] for t in selected_types])]
size_conditions = []
for val in selected_sizes:
if val == 'Small (< 100M)':
size_conditions.append(filtered_df['#Params (M)'] < 100)
elif val == 'Base (100M-300M)':
size_conditions.append((filtered_df['#Params (M)'] >= 100) & (filtered_df['#Params (M)'] <= 300))
elif val == 'Large (300M-500M)':
size_conditions.append((filtered_df['#Params (M)'] >= 300) & (filtered_df['#Params (M)'] <= 500))
elif val == 'Extra-large (500M+)':
size_conditions.append(filtered_df['#Params (M)'] > 500)
if size_conditions:
filtered_df = filtered_df[pd.concat(size_conditions, axis=1).any(axis=1)]
if query:
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False)]
return filtered_df
with gr.Blocks() as demo:
gr.HTML("""
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="align-self: flex-start;">
<a href="mailto:antoiloui@gmail.com" target="_blank" style="color: blue; text-decoration: none;">Contact/Submissions</a>
</div>
<h1 style="margin: 0;">🥇 DécouvrIR\n</h1>A Benchmark for Evaluating the Robustness of Information Retrieval Models in French</h1>
</div>
""")
# Create the Pandas dataframes (one per dataset)
all_df = load_all_results()
mmarco_df = filter_dataf_by_dataset(all_df, dataset_name="mMARCO-fr", sort_by="Recall@500")
bsard_df = filter_dataf_by_dataset(all_df, dataset_name="BSARD", sort_by="Recall@500")
# Search and filter widgets
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False, elem_id="search-bar")
with gr.Row():
filter_type = gr.CheckboxGroup(
label="Model type",
choices=[
'Single-vector dense bi-encoder (SINGLE)',
'Multi-vector dense bi-encoder (MULTI)',
'Sparse lexical model (SPARSE)',
'Cross-encoder (CROSS)',
],
value=[],
interactive=True,
elem_id="filter-type",
)
with gr.Row():
filter_size = gr.CheckboxGroup(
label="Model size",
choices=['Small (< 100M)', 'Base (100M-300M)', 'Large (300M-500M)', 'Extra-large (500M+)'],
value=[],
interactive=True,
elem_id="filter-size",
)
# Leaderboard tables
with gr.Tabs():
with gr.TabItem("🌐 mMARCO-fr"):
gr.HTML("""
<p>The <a href="https://huggingface.co/datasets/unicamp-dl/mmarco" target="_blank" style="color: blue; text-decoration: none;">mMARCO</a> dataset is a machine-translated version of
the widely popular MS MARCO dataset across 13 languages (including French) for studying <strong> domain-general</strong> passage retrieval.</p>
<p>The evaluation is performed on <strong>6,980 dev questions</strong> labeled with relevant passages to be retrieved from a corpus of <strong>8,841,823 candidates</strong>.</p>
""")
mmarco_table = gr.Dataframe(
value=mmarco_df,
datatype=[COLUMNS[col] for col in mmarco_df.columns],
interactive=False,
elem_classes="text-sm",
)
with gr.TabItem("⚖️ BSARD"):
gr.HTML("""
<p>The <a href="https://huggingface.co/datasets/maastrichtlawtech/bsard" target="_blank" style="color: blue; text-decoration: none;">Belgian Statutory Article Retrieval Dataset (BSARD)</a> is a
French native dataset for studying <strong>legal</strong> document retrieval.</p>
<p>The evaluation is performed on <strong>222 test questions</strong> labeled by experienced jurists with relevant Belgian law articles to be retrieved from a corpus of <strong>22,633 candidates</strong>.</p>
<i>[Coming soon...]</i>
""")
# bsard_table = gr.Dataframe(
# value=bsard_df,
# datatype=[COLUMNS[col] for col in bsard_df.columns],
# interactive=False,
# elem_classes="text-sm",
# )
# Update tables on filter widgets change.
widgets = [search_bar, filter_type, filter_size]
for w in widgets:
w.change(fn=lambda q, t, s: update_table(dataf=mmarco_df, query=q, selected_types=t, selected_sizes=s), inputs=widgets, outputs=[mmarco_table])
#w.change(fn=lambda q, t, s: update_table(dataf=bsard_df, query=q, selected_types=t, selected_sizes=s), inputs=widgets, outputs=[bsard_table])
# Citation
with gr.Column():
with gr.Row():
gr.HTML("""
<h2>Citation</h2>
<p>For attribution in academic contexts, please cite this benchmark and any of the models released by <a href="https://huggingface.co/antoinelouis" target="_blank" style="color: blue; text-decoration: none;">@antoinelouis</a> as follows:</p>
""")
with gr.Row():
citation_block = (
"@online{louis2024decouvrir,\n"
"\tauthor = 'Antoine Louis',\n"
"\ttitle = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',\n"
"\tpublisher = 'Hugging Face',\n"
"\tmonth = 'mar',\n"
"\tyear = '2024',\n"
"\turl = 'https://huggingface.co/spaces/antoinelouis/decouvrir',\n"
"}\n"
)
gr.Code(citation_block, language=None, show_label=False)
demo.launch() |