Spaces:
Running
Running
import os | |
import csv | |
import json | |
import torch | |
import shutil | |
import textwrap | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from tqdm.auto import tqdm | |
from collections import Counter | |
from tokenizers import Tokenizer | |
import plotly.graph_objects as go | |
from huggingface_hub import whoami, HfApi | |
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, pipeline | |
LANGUAGES = { | |
"french": {"emoji":"🇫🇷", "nllb_code":"fra_Latn", "hf_code":"fr"}, | |
"english": {"emoji":"🇬🇧", "nllb_code":"eng_Latn", "hf_code":"en"}, | |
"german": {"emoji":"🇩🇪", "nllb_code":"deu_Latn", "hf_code":"de"}, | |
"italian": {"emoji":"🇮🇹", "nllb_code":"ita_Latn", "hf_code":"it"}, | |
"spanish": {"emoji":"🇪🇸", "nllb_code":"spa_Latn", "hf_code":"es"}, | |
"portuguese": {"emoji":"🇵🇹", "nllb_code":"por_Latn", "hf_code":"pt"} | |
} | |
MODELS = [ | |
"intfloat/multilingual-e5-small", | |
"intfloat/multilingual-e5-base", | |
"intfloat/multilingual-e5-large", | |
"BAAI/bge-m3", | |
"Alibaba-NLP/gte-multilingual-base", | |
#"jinaai/jina-embeddings-v3", # TODO: uses ParametrizedEmbedding | |
] | |
def estimate_pruned_vocabulary(tokenizer: PreTrainedTokenizerFast, language: str): | |
""" | |
Estimate the most common tokens in the language. You should first download the 1M sentences dataset for the desired language. | |
Source: https://wortschatz.uni-leipzig.de/en/download/English | |
""" | |
sentences_file = f'data.nosync/{language}_news_2020_1M-sentences.txt' | |
if os.path.exists(sentences_file): | |
df = pd.read_csv(sentences_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, names=['id', 'text']) | |
my_bar = st.progress(0) | |
counter = Counter(tokenizer.all_special_tokens) | |
for i, text in enumerate(df.text): | |
counter.update(tok for tok in tokenizer.tokenize(text)) | |
my_bar.progress(i/len(df), text=f"{i/len(df)*100:.0f}%") | |
return set(counter) | |
else: | |
raise FileNotFoundError | |
def load_model_and_tokenizer(model_name: str): | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) | |
return model, tokenizer | |
def count_parameters(model, layer_name: str = None): | |
return sum(p.numel() for name, p in model.named_parameters() if layer_name is None or name.startswith(layer_name)) | |
def get_test_sentence(target_lang: str, source_lang: str = "eng_Latn"): | |
text = """ | |
Alan Mathison Turing (23 June 1912 - 7 June 1954) was an English mathematician, | |
computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. | |
""" | |
if target_lang == "eng_Latn": | |
return text | |
model_name = "facebook/nllb-200-distilled-600M" | |
translator = pipeline(task="translation", tokenizer=model_name, model=model_name) | |
return translator(text, src_lang=source_lang, tgt_lang=target_lang)[0]['translation_text'] | |
def push_to_hub(hf_username: str, hf_token: str, model_dir: str, private: bool = False): | |
api = HfApi(endpoint="https://huggingface.co", token=hf_token) | |
repo_id = f"{hf_username}/{model_dir.split('/')[-1]}" | |
api.create_repo(repo_id=repo_id, repo_type="model", private=private) | |
api.upload_folder(repo_id=repo_id, folder_path=model_dir, commit_message="Upload pruned model") | |
def prune_model(model_name: str, language: str, hf_username: str, hf_token: str, keep_english: bool): | |
st.markdown(f"- Let's prune the [**{model_name}**](https://huggingface.co/{model_name}) model to keep its **{language.capitalize()}** tokens only.") | |
# Load the model and its tokenizer | |
model, tokenizer = load_model_and_tokenizer(model_name) | |
# Calculate parameters for the original model | |
all_params = count_parameters(model) | |
encoder_params = count_parameters(model, layer_name="encoder") | |
embedding_params = count_parameters(model, layer_name="embeddings") | |
st.markdown( | |
f"- The original model has **{all_params/1e6:.1f}M** parameters, of which **{embedding_params/all_params*100:.0f}%** "+ | |
f"(i.e., {embedding_params/1e6:.1f}M params) come from the *embedding matrix* and its {tokenizer.vocab_size} token entries. "+ | |
f"This means that the contextualization of text sequences is actually done by a *{model.config.num_hidden_layers}-layer Transformer encoder* "+ | |
f"with **{encoder_params/1e6:.1f}M** parameters only." | |
) | |
with st.status(f"Computing the {language.capitalize()} vocabulary...", expanded=True) as status: | |
filtered_tokens = estimate_pruned_vocabulary(tokenizer, language) | |
num_filtered_tokens = len(filtered_tokens) | |
st.write( | |
f"{language.capitalize()} only uses **{num_filtered_tokens/tokenizer.vocab_size*100:.0f}%** "+ | |
f"of the model vocabulary (i.e., {num_filtered_tokens} out of the original {tokenizer.vocab_size} tokens)." | |
) | |
status.update(state="complete", expanded=True) | |
if keep_english: | |
with st.status(f"Computing the English vocabulary...", expanded=True) as status: | |
english_tokens = estimate_pruned_vocabulary(tokenizer, "english") | |
filtered_tokens.update(english_tokens) | |
st.write(f"Considering the **English** tokens adds **{len(filtered_tokens) - num_filtered_tokens}** tokens to the vocabulary.") | |
num_filtered_tokens = len(filtered_tokens) | |
status.update(state="complete", expanded=True) | |
with st.status("Pruning the model...", expanded=True) as status: | |
st.write("- *Updating the tokenizer*") | |
outdir = f"{language}-{model_name.split('/')[-1]}" | |
# Export the tokenizer to a JSON string and access its vocabulary (list of lists: [[token, score], ...]) | |
tokenizer_json = json.loads(tokenizer.backend_tokenizer.to_str()) | |
original_vocab = tokenizer_json['model']['vocab'] | |
# Build a mapping from tokens to their original IDs | |
original_token_to_id = {entry[0]: idx for idx, entry in enumerate(original_vocab)} | |
# Filter out the tokens to remove and reassign new IDs | |
new_id = 0 | |
new_token_to_id = {} | |
new_id_to_original_id = {} | |
filtered_vocab_entries = [] | |
for token, score in original_vocab: | |
if token in filtered_tokens: | |
filtered_vocab_entries.append([token, score]) | |
new_token_to_id[token] = new_id | |
new_id_to_original_id[new_id] = original_token_to_id[token] | |
new_id += 1 | |
# Update the vocab in the tokenizer JSON and rebuild the tokenizer from the modified JSON | |
tokenizer_json['model']['vocab'] = filtered_vocab_entries | |
new_backend_tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json)) | |
# Create a new tokenizer instance and save it | |
new_tokenizer = PreTrainedTokenizerFast(tokenizer_object=new_backend_tokenizer, **tokenizer.init_kwargs) | |
new_tokenizer.save_pretrained(outdir) | |
st.write("- *Updating the embedding matrix*") | |
new_model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
# Create a new embedding matrix and map the original vectors to their new IDs | |
original_embeddings = new_model.get_input_embeddings().weight.data | |
new_embeddings = torch.nn.Embedding( | |
num_embeddings=new_tokenizer.vocab_size, | |
embedding_dim=model.config.hidden_size, | |
padding_idx=new_tokenizer.pad_token_id, | |
) | |
for new_id in range(new_tokenizer.vocab_size): | |
original_id = new_id_to_original_id.get(new_id) | |
new_embeddings.weight.data[new_id] = original_embeddings[original_id] | |
new_model.set_input_embeddings(new_embeddings) | |
new_model.config.vocab_size = new_tokenizer.vocab_size | |
new_model.save_pretrained(outdir) | |
status.update(state="complete", expanded=True) | |
with st.status("Testing the conversion...", expanded=True) as status: | |
st.write(f"- *Checking the pruned tokenizer*") | |
assert len(new_tokenizer) == num_filtered_tokens, f"ERROR: new tokenizer size ({len(new_tokenizer)}) != number of filtered tokens ({num_filtered_tokens})" | |
assert filtered_tokens == set(new_tokenizer.convert_ids_to_tokens(range(len(new_tokenizer)))), f"ERROR: The new tokenizer vocabulary doesn't match number of the filtered tokens" | |
st.write(f"- *Checking the pruned model*") | |
test_sentence = get_test_sentence(LANGUAGES[language]['nllb_code']) | |
with torch.inference_mode(): | |
emb1 = model(**tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy() | |
emb2 = new_model(**new_tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy() | |
diff = np.abs(emb1 - emb2).max() | |
assert diff < 1e-6, f"ERROR: Some dimensions of the two vectors have a non negligible difference ({diff})" | |
st.write(f"""All good! The output *[cls]* token embedding of the test sentence *"{test_sentence}"* should be similar:""") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("Original model:") | |
st.code(f"{emb1.tolist()}") | |
with col2: | |
st.markdown("Pruned model:") | |
st.code(f"{emb2.tolist()}") | |
status.update(state="complete", expanded=True) | |
# Show visually the result of the pruning process | |
pruned_all_params = count_parameters(new_model) | |
pruned_encoder_params = count_parameters(new_model, layer_name="encoder") | |
pruned_embedding_params = count_parameters(new_model, layer_name="embeddings") | |
st.markdown(f"The pruned model is **{pruned_all_params/all_params*100:.1f}%** of the original model size.") | |
data = { | |
'Model': ['Original', 'Pruned'], | |
'Embedding': [embedding_params / 1e6, pruned_embedding_params / 1e6], | |
'Encoder': [encoder_params / 1e6, pruned_encoder_params / 1e6] | |
} | |
fig = go.Figure(data=[ | |
go.Bar(name='Embedding matrix', x=data['Model'], y=data['Embedding'], text=data['Embedding'], textposition='inside', marker_color='#E5B4B4'), | |
go.Bar(name='Transformer encoder', x=data['Model'], y=data['Encoder'], text=data['Encoder'], textposition='inside', marker_color='#7FBFE0') | |
]) | |
fig.update_layout(barmode='stack', yaxis_title='# Params (M)', height=400, margin=dict(t=10, b=10)) | |
fig.update_traces(texttemplate='%{text:.1f}M', textposition='inside', insidetextanchor='middle') | |
st.plotly_chart(fig) | |
# Add a README to the pruned model repo | |
new_model_name = f"{hf_username}/{outdir.split('/')[-1]}" | |
readme_content = textwrap.dedent(f""" | |
--- | |
pipeline_tag: sentence-similarity | |
language: {LANGUAGES[language]['hf_code']} | |
license: mit | |
tags: | |
- passage-retrieval | |
- sentence-similarity | |
- pruned | |
library_name: sentence-transformers | |
base_model: {model_name} | |
base_model_relation: quantized | |
--- | |
# {LANGUAGES[language]['emoji']} {new_model_name.split('/')[-1]} | |
This model is a {100 - pruned_all_params/all_params*100:.1f}% smaller version of [{model_name}](https://huggingface.co/{model_name}) | |
for the {language.capitalize()} language, created using the [mtem-pruner](https://huggingface.co/spaces/antoinelouis/mtem-pruner) space. | |
This pruned model should perform similarly to the original model for {language.capitalize()} language tasks with a much smaller | |
memory footprint. However, it may not perform well for other languages present in the original multilingual model as tokens not | |
commonly used in {language.capitalize()} were removed from the original multilingual model's vocabulary. | |
## Usage | |
You can use this model with the Transformers library: | |
```python | |
from transformers import AutoModel, AutoTokenizer | |
model_name = "{new_model_name}" | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) | |
``` | |
**Credits**: cc [@antoinelouis](https://huggingface.co/antoinelouis) | |
""") | |
with open(os.path.join(outdir, "README.md"), "w") as f: | |
f.write(readme_content) | |
with st.status("Pushing the pruned model to your Hugging Face account...", expanded=True) as status: | |
push_to_hub(hf_username, hf_token, outdir) | |
shutil.rmtree(outdir) | |
status.update(state="complete", expanded=False) | |
st.markdown("Done! You can now load your pruned model like this:") | |
st.code(f""" | |
from transformers import AutoModel, AutoTokenizer | |
model_name = "{new_model_name}" | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) | |
""", language="python") | |
def main(): | |
st.header("Multilingual Text Embedding Model Pruner") | |
st.markdown(""" | |
This space helps you create a smaller, language-specific version of a multilingual text embedding model. Here's what it does: | |
1. 🌎 Takes a state-of-the-art text embedding model that was trained on many languages | |
2. ✂️ Trims it down to focus on just one language by removing unused tokens from its vocabulary | |
3. 🚀 Gives you a smaller model that works just as well for your chosen language | |
#### Why is this useful? | |
- 💾 Get the same performance in your language with a much smaller model size | |
- 🌐 Great for low-resource environments with limited RAM | |
Ready to shrink your model? Let's get started! | |
""") | |
model_name = st.selectbox("Choose a multilingual model", MODELS) | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
language = st.selectbox( | |
"Pick your target language", | |
options=list(LANGUAGES.keys()), | |
format_func=lambda x: f"{LANGUAGES[x]['emoji']} {x.capitalize()}" | |
) | |
with col2: | |
st.write("") | |
st.write("") | |
keep_english = st.checkbox("Keep English", value=False, help="Keep English tokens in addition to the selected language") | |
col3, col4 = st.columns(2) | |
with col3: | |
hf_username = st.text_input("Your Hugging Face username", placeholder="antoinelouis") | |
with col4: | |
hf_token = st.text_input("Your Hugging Face access token", type="password", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") | |
if st.button("Prune model"): | |
if not hf_username or not hf_token: | |
st.error("Your HF username and access token are required to save the pruned model on your account.") | |
else: | |
_ = whoami(token=hf_token) | |
prune_model(model_name, language, hf_username, hf_token, keep_english) | |
st.markdown( | |
""" | |
<style> | |
.credits { | |
position: fixed; | |
right: 10px; | |
bottom: 10px; | |
color: #888888; | |
font-size: 11px; | |
} | |
</style> | |
<div class="credits"> | |
Credits to <a href="https://gist.github.com/avidale/44cd35bfcdaf8bedf51d97c468cc8001" target="_blank">@avidale</a> for inspiration. | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
if __name__ == "__main__": | |
main() |