Spaces:
Running
Running
antoinelouis
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import shutil
|
6 |
+
import requests
|
7 |
+
import textwrap
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
from collections import Counter
|
13 |
+
from tokenizers import Tokenizer
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
from huggingface_hub import whoami, HfApi
|
16 |
+
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, pipeline
|
17 |
+
|
18 |
+
|
19 |
+
LANGUAGES = {
|
20 |
+
"french": {"emoji":"🇫🇷", "nllb_code":"fra_Latn", "hf_code":"fr"},
|
21 |
+
"english": {"emoji":"🇬🇧", "nllb_code":"eng_Latn", "hf_code":"en"},
|
22 |
+
"german": {"emoji":"🇩🇪", "nllb_code":"deu_Latn", "hf_code":"de"},
|
23 |
+
"italian": {"emoji":"🇮🇹", "nllb_code":"ita_Latn", "hf_code":"it"},
|
24 |
+
"spanish": {"emoji":"🇪🇸", "nllb_code":"spa_Latn", "hf_code":"es"},
|
25 |
+
"portuguese": {"emoji":"🇵🇹", "nllb_code":"por_Latn", "hf_code":"pt"}
|
26 |
+
}
|
27 |
+
|
28 |
+
MODELS = [
|
29 |
+
"intfloat/multilingual-e5-small",
|
30 |
+
"intfloat/multilingual-e5-base",
|
31 |
+
"intfloat/multilingual-e5-large",
|
32 |
+
"BAAI/bge-m3",
|
33 |
+
"Alibaba-NLP/gte-multilingual-base",
|
34 |
+
#"jinaai/jina-embeddings-v3", # TODO: uses ParametrizedEmbedding
|
35 |
+
]
|
36 |
+
|
37 |
+
def estimate_pruned_vocabulary(tokenizer: PreTrainedTokenizerFast, language: str):
|
38 |
+
"""
|
39 |
+
Estimate the most common tokens in the language. You should first download the 1M sentences dataset for the desired language.
|
40 |
+
Source: https://wortschatz.uni-leipzig.de/en/download/English
|
41 |
+
"""
|
42 |
+
sentences_file = f'data.nosync/{language}_news_2020_1M-sentences.txt'
|
43 |
+
if os.path.exists(sentences_file):
|
44 |
+
df = pd.read_csv(sentences_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, names=['id', 'text'])
|
45 |
+
counter = Counter(tokenizer.all_special_tokens)
|
46 |
+
counter.update(tok for t in tqdm(df.text) for tok in tokenizer.tokenize(t))
|
47 |
+
with open(f"data.nosync/{language}_filtered_tokens.txt", "w") as f:
|
48 |
+
f.write("\n".join(map(str, set(counter))))
|
49 |
+
else:
|
50 |
+
raise FileNotFoundError
|
51 |
+
|
52 |
+
def get_pruned_vocabulary(language: str):
|
53 |
+
filtered_tokens_file = f"data.nosync/{language}_filtered_tokens.txt"
|
54 |
+
if os.path.exists(filtered_tokens_file):
|
55 |
+
with open(filtered_tokens_file, "r") as f:
|
56 |
+
return set(f.read().splitlines())
|
57 |
+
else:
|
58 |
+
raise FileNotFoundError(f"No filtered tokens file found for language {language}. Please run `estimate_pruned_vocabulary` first.")
|
59 |
+
|
60 |
+
@st.cache_resource
|
61 |
+
def load_model_and_tokenizer(model_name: str):
|
62 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
64 |
+
return model, tokenizer
|
65 |
+
|
66 |
+
def count_parameters(model, layer_name: str = None):
|
67 |
+
return sum(p.numel() for name, p in model.named_parameters() if layer_name is None or name.startswith(layer_name))
|
68 |
+
|
69 |
+
@st.cache_resource
|
70 |
+
def get_test_sentence(target_lang: str, source_lang: str = "eng_Latn"):
|
71 |
+
text = """
|
72 |
+
Alan Mathison Turing (23 June 1912 - 7 June 1954) was an English mathematician,
|
73 |
+
computer scientist, logician, cryptanalyst, philosopher and theoretical biologist.
|
74 |
+
"""
|
75 |
+
if target_lang == "eng_Latn":
|
76 |
+
return text
|
77 |
+
model_name = "facebook/nllb-200-distilled-600M"
|
78 |
+
translator = pipeline(task="translation", tokenizer=model_name, model=model_name)
|
79 |
+
return translator(text, src_lang=source_lang, tgt_lang=target_lang)[0]['translation_text']
|
80 |
+
|
81 |
+
def push_to_hub(username: str, token: str, model_dir: str, private: bool = False):
|
82 |
+
_ = whoami(token=token)
|
83 |
+
api = HfApi(endpoint="https://huggingface.co", token=token)
|
84 |
+
repo_id = f"{username}/{model_dir.split('/')[-1]}"
|
85 |
+
api.create_repo(repo_id=repo_id, repo_type="model", private=private)
|
86 |
+
api.upload_folder(repo_id=repo_id, folder_path=model_dir, commit_message="Upload pruned model")
|
87 |
+
|
88 |
+
def prune_model(model_name: str, language: str, username: str, token: str):
|
89 |
+
st.markdown(f"- Pruning the [**{model_name}**](https://huggingface.co/{model_name}) model to keep its **{language.capitalize()}** tokens only. *Let's go!*")
|
90 |
+
|
91 |
+
# Load the model and its tokenizer
|
92 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
93 |
+
|
94 |
+
# Calculate parameters for the original model
|
95 |
+
all_params = count_parameters(model)
|
96 |
+
encoder_params = count_parameters(model, layer_name="encoder")
|
97 |
+
embedding_params = count_parameters(model, layer_name="embeddings")
|
98 |
+
|
99 |
+
st.markdown(
|
100 |
+
f"- The model has **{all_params/1e6:.1f}M** parameters, of which **{embedding_params/all_params*100:.0f}%** "+
|
101 |
+
f"(i.e., {embedding_params/1e6:.1f}M params) come from the *embedding matrix* and its {tokenizer.vocab_size} token entries. "+
|
102 |
+
f"This means that the contextualization of text sequences is actually done by a *{model.config.num_hidden_layers}-layer Transformer encoder* "+
|
103 |
+
f"with **{encoder_params/1e6:.1f}M** parameters only."
|
104 |
+
)
|
105 |
+
|
106 |
+
# Estimate the most used tokens in the language.
|
107 |
+
filtered_tokens = get_pruned_vocabulary(language)
|
108 |
+
st.markdown(
|
109 |
+
f"- {language.capitalize()} seems to only use **{len(filtered_tokens)/tokenizer.vocab_size*100:.0f}%** "+
|
110 |
+
f"of the model vocabulary (i.e., {len(filtered_tokens)} out of the original {tokenizer.vocab_size} tokens)."
|
111 |
+
)
|
112 |
+
|
113 |
+
st.markdown("- *Updating the tokenizer...*")
|
114 |
+
outdir = f"{language}-{model_name.split('/')[-1]}"
|
115 |
+
|
116 |
+
# Export the tokenizer to a JSON string and access its vocabulary (list of lists: [[token, score], ...])
|
117 |
+
tokenizer_json = json.loads(tokenizer.backend_tokenizer.to_str())
|
118 |
+
original_vocab = tokenizer_json['model']['vocab']
|
119 |
+
|
120 |
+
# Build a mapping from tokens to their original IDs
|
121 |
+
original_token_to_id = {entry[0]: idx for idx, entry in enumerate(original_vocab)}
|
122 |
+
|
123 |
+
# Filter out the tokens to remove and reassign new IDs
|
124 |
+
new_id = 0
|
125 |
+
new_token_to_id = {}
|
126 |
+
new_id_to_original_id = {}
|
127 |
+
filtered_vocab_entries = []
|
128 |
+
|
129 |
+
for token, score in original_vocab:
|
130 |
+
if token in filtered_tokens:
|
131 |
+
filtered_vocab_entries.append([token, score])
|
132 |
+
new_token_to_id[token] = new_id
|
133 |
+
new_id_to_original_id[new_id] = original_token_to_id[token]
|
134 |
+
new_id += 1
|
135 |
+
|
136 |
+
# Update the vocab in the tokenizer JSON and rebuild the tokenizer from the modified JSON
|
137 |
+
tokenizer_json['model']['vocab'] = filtered_vocab_entries
|
138 |
+
new_backend_tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
|
139 |
+
|
140 |
+
# Create a new tokenizer instance and save it
|
141 |
+
new_tokenizer = PreTrainedTokenizerFast(tokenizer_object=new_backend_tokenizer, **tokenizer.init_kwargs)
|
142 |
+
new_tokenizer.save_pretrained(outdir)
|
143 |
+
|
144 |
+
st.markdown("- *Updating the embedding matrix...*")
|
145 |
+
new_model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
146 |
+
|
147 |
+
# Create a new embedding matrix and map the original vectors to their new IDs
|
148 |
+
original_embeddings = new_model.get_input_embeddings().weight.data
|
149 |
+
new_embeddings = torch.nn.Embedding(
|
150 |
+
num_embeddings=new_tokenizer.vocab_size,
|
151 |
+
embedding_dim=model.config.hidden_size,
|
152 |
+
padding_idx=new_tokenizer.pad_token_id,
|
153 |
+
)
|
154 |
+
|
155 |
+
for new_id in range(new_tokenizer.vocab_size):
|
156 |
+
original_id = new_id_to_original_id.get(new_id)
|
157 |
+
new_embeddings.weight.data[new_id] = original_embeddings[original_id]
|
158 |
+
|
159 |
+
new_model.set_input_embeddings(new_embeddings)
|
160 |
+
new_model.config.vocab_size = new_tokenizer.vocab_size
|
161 |
+
new_model.save_pretrained(outdir)
|
162 |
+
|
163 |
+
# Test the conversion
|
164 |
+
test_sentence = get_test_sentence(LANGUAGES[language]['nllb_code'])
|
165 |
+
st.markdown(f"""- *Verifying everything worked as expected with the following test sentence: "{test_sentence}"*""")
|
166 |
+
|
167 |
+
assert len(new_tokenizer) == len(filtered_tokens), f"ERROR: new tokenizer size ({len(new_tokenizer)}) != number of filtered tokens ({len(filtered_tokens)})"
|
168 |
+
assert filtered_tokens == set(new_tokenizer.convert_ids_to_tokens(range(len(new_tokenizer)))), f"ERROR: The new tokenizer vocabulary doesn't match number of the filtered tokens"
|
169 |
+
|
170 |
+
with torch.inference_mode():
|
171 |
+
emb1 = model(**tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
|
172 |
+
emb2 = new_model(**new_tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
|
173 |
+
diff = np.abs(emb1 - emb2).max()
|
174 |
+
assert diff < 1e-6, f"ERROR: Some dimensions of the two vectors have a non negligible difference ({diff})"
|
175 |
+
|
176 |
+
st.success("The conversion **succeeded**! You can verify it by looking at the output *[cls]* token embedding:")
|
177 |
+
col1, col2 = st.columns(2)
|
178 |
+
with col1:
|
179 |
+
st.markdown("Original model:")
|
180 |
+
st.code(f"{emb1.tolist()}")
|
181 |
+
with col2:
|
182 |
+
st.markdown("Pruned model:")
|
183 |
+
st.code(f"{emb2.tolist()}")
|
184 |
+
|
185 |
+
# Show visually the result of the pruning process
|
186 |
+
pruned_all_params = count_parameters(new_model)
|
187 |
+
pruned_encoder_params = count_parameters(new_model, layer_name="encoder")
|
188 |
+
pruned_embedding_params = count_parameters(new_model, layer_name="embeddings")
|
189 |
+
st.markdown(f"The pruned model is **{pruned_all_params/all_params*100:.1f}%** of the original model size.")
|
190 |
+
data = {
|
191 |
+
'Model': ['Original', 'Pruned'],
|
192 |
+
'Embedding': [embedding_params / 1e6, pruned_embedding_params / 1e6],
|
193 |
+
'Encoder': [encoder_params / 1e6, pruned_encoder_params / 1e6]
|
194 |
+
}
|
195 |
+
fig = go.Figure(data=[
|
196 |
+
go.Bar(name='Embedding matrix', x=data['Model'], y=data['Embedding'], text=data['Embedding'], textposition='inside', marker_color='#E5B4B4'),
|
197 |
+
go.Bar(name='Transformer encoder', x=data['Model'], y=data['Encoder'], text=data['Encoder'], textposition='inside', marker_color='#7FBFE0')
|
198 |
+
])
|
199 |
+
fig.update_layout(barmode='stack', yaxis_title='# Params (M)', height=400, margin=dict(t=10, b=10))
|
200 |
+
fig.update_traces(texttemplate='%{text:.1f}M', textposition='inside', insidetextanchor='middle')
|
201 |
+
st.plotly_chart(fig)
|
202 |
+
|
203 |
+
# Add a README to the pruned model repo
|
204 |
+
new_model_name = f"{username}/{outdir.split('/')[-1]}"
|
205 |
+
readme_content = textwrap.dedent(f"""
|
206 |
+
---
|
207 |
+
pipeline_tag: sentence-similarity
|
208 |
+
language: {LANGUAGES[language]['hf_code']}
|
209 |
+
license: mit
|
210 |
+
tags:
|
211 |
+
- passage-retrieval
|
212 |
+
- sentence-similarity
|
213 |
+
- pruned
|
214 |
+
library_name: sentence-transformers
|
215 |
+
base_model: {model_name}
|
216 |
+
base_model_relation: pruned
|
217 |
+
---
|
218 |
+
# {new_model_name.split('/')[-1]}
|
219 |
+
|
220 |
+
This model is a pruned version of [{model_name}](https://huggingface.co/{model_name}) for the {language.capitalize()} language.
|
221 |
+
|
222 |
+
It was created by the [Multilingual Text Embedding Model Pruner](https://huggingface.co/spaces/antoinelouis/mteb-pruner) space,
|
223 |
+
which removed tokens not commonly used in {language.capitalize()} from the original multilingual model's vocabulary and adjsuted
|
224 |
+
the model's embedding matrix accordingly.
|
225 |
+
|
226 |
+
This pruned model should perform similarly to the original model for {language.capitalize()} language tasks, but with a much smaller
|
227 |
+
memory footprint ({100 - pruned_all_params/all_params*100:.1f}% smaller). However, it may not perform well for other languages present
|
228 |
+
in the original multilingual model.
|
229 |
+
|
230 |
+
## Usage
|
231 |
+
|
232 |
+
You can use this model with the Transformers library:
|
233 |
+
|
234 |
+
```python
|
235 |
+
from transformers import AutoModel, AutoTokenizer
|
236 |
+
|
237 |
+
model_name = "{new_model_name}"
|
238 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
239 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
240 |
+
```
|
241 |
+
""")
|
242 |
+
with open(os.path.join(outdir, "README.md"), "w") as f:
|
243 |
+
f.write(readme_content)
|
244 |
+
|
245 |
+
st.markdown("- *Pushing the pruned model to your Hugging Face account...*")
|
246 |
+
push_to_hub(username, token, outdir)
|
247 |
+
shutil.rmtree(outdir)
|
248 |
+
|
249 |
+
st.markdown("Done! You can now load your pruned model like this:")
|
250 |
+
st.code(f"""
|
251 |
+
from transformers import AutoModel, AutoTokenizer
|
252 |
+
|
253 |
+
model_name = "{new_model_name}"
|
254 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
255 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
256 |
+
""", language="python")
|
257 |
+
|
258 |
+
|
259 |
+
def main():
|
260 |
+
st.header("Multilingual Text Embedding Model Pruner")
|
261 |
+
st.markdown("""
|
262 |
+
This space helps you create a smaller, language-specific version of a multilingual text embedding model. Here's what it does:
|
263 |
+
|
264 |
+
1. 🌎 Takes a popular text embedding model that was trained on many languages
|
265 |
+
2. ✂️ Trims it down to focus on just one language by removing unused tokens from its vocabulary
|
266 |
+
3. 🚀 Gives you a smaller model that works just as well for your chosen language
|
267 |
+
|
268 |
+
#### Why is this useful?
|
269 |
+
|
270 |
+
- 💾 Get the same performance in your language with a much smaller model size
|
271 |
+
- 🌐 Great for low-resource environments with limited RAM
|
272 |
+
|
273 |
+
Ready to shrink your model? Let's get started!
|
274 |
+
""")
|
275 |
+
|
276 |
+
model_name = st.selectbox("Choose a multilingual model", MODELS)
|
277 |
+
language = st.selectbox(
|
278 |
+
"Pick your target language",
|
279 |
+
options=list(LANGUAGES.keys()),
|
280 |
+
format_func=lambda x: f"{LANGUAGES[x]['emoji']} {x.capitalize()}"
|
281 |
+
)
|
282 |
+
username = st.text_input("Your Hugging Face username", placeholder="antoinelouis")
|
283 |
+
token = st.text_input("Your Hugging Face access token", type="password", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
|
284 |
+
|
285 |
+
if st.button("Prune Model"):
|
286 |
+
if not username or not token:
|
287 |
+
st.error("Your HF username and access token is required to save the pruned model on your account.")
|
288 |
+
else:
|
289 |
+
prune_model(model_name, language, username, token)
|
290 |
+
|
291 |
+
st.markdown(
|
292 |
+
"""
|
293 |
+
<style>
|
294 |
+
.credits {
|
295 |
+
position: fixed;
|
296 |
+
right: 10px;
|
297 |
+
bottom: 10px;
|
298 |
+
color: #888888;
|
299 |
+
font-size: 11px;
|
300 |
+
}
|
301 |
+
</style>
|
302 |
+
<div class="credits">
|
303 |
+
Credits to <a href="https://gist.github.com/avidale/44cd35bfcdaf8bedf51d97c468cc8001" target="_blank">@avidale</a> for inspiration.
|
304 |
+
</div>
|
305 |
+
""",
|
306 |
+
unsafe_allow_html=True
|
307 |
+
)
|
308 |
+
|
309 |
+
if __name__ == "__main__":
|
310 |
+
main()
|