import os import csv import json import torch import shutil import textwrap import numpy as np import pandas as pd import streamlit as st from tqdm.auto import tqdm from collections import Counter from tokenizers import Tokenizer import plotly.graph_objects as go from huggingface_hub import whoami, HfApi from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, pipeline LANGUAGES = { "french": {"emoji":"🇫🇷", "nllb_code":"fra_Latn", "hf_code":"fr"}, "english": {"emoji":"🇬🇧", "nllb_code":"eng_Latn", "hf_code":"en"}, "german": {"emoji":"🇩🇪", "nllb_code":"deu_Latn", "hf_code":"de"}, "italian": {"emoji":"🇮🇹", "nllb_code":"ita_Latn", "hf_code":"it"}, "spanish": {"emoji":"🇪🇸", "nllb_code":"spa_Latn", "hf_code":"es"}, "portuguese": {"emoji":"🇵🇹", "nllb_code":"por_Latn", "hf_code":"pt"} } MODELS = [ "intfloat/multilingual-e5-small", "intfloat/multilingual-e5-base", "intfloat/multilingual-e5-large", "BAAI/bge-m3", "Alibaba-NLP/gte-multilingual-base", #"jinaai/jina-embeddings-v3", # TODO: uses ParametrizedEmbedding ] def estimate_pruned_vocabulary(tokenizer: PreTrainedTokenizerFast, language: str): """ Estimate the most common tokens in the language. You should first download the 1M sentences dataset for the desired language. Source: https://wortschatz.uni-leipzig.de/en/download/English """ sentences_file = f'data.nosync/{language}_news_2020_1M-sentences.txt' if os.path.exists(sentences_file): df = pd.read_csv(sentences_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, names=['id', 'text']) my_bar = st.progress(0) counter = Counter(tokenizer.all_special_tokens) for i, text in enumerate(df.text): counter.update(tok for tok in tokenizer.tokenize(text)) my_bar.progress(i/len(df), text=f"{i/len(df)*100:.0f}%") return set(counter) else: raise FileNotFoundError @st.cache_resource def load_model_and_tokenizer(model_name: str): model = AutoModel.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) return model, tokenizer def count_parameters(model, layer_name: str = None): return sum(p.numel() for name, p in model.named_parameters() if layer_name is None or name.startswith(layer_name)) @st.cache_resource def get_test_sentence(target_lang: str, source_lang: str = "eng_Latn"): text = """ Alan Mathison Turing (23 June 1912 - 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. """ if target_lang == "eng_Latn": return text model_name = "facebook/nllb-200-distilled-600M" translator = pipeline(task="translation", tokenizer=model_name, model=model_name) return translator(text, src_lang=source_lang, tgt_lang=target_lang)[0]['translation_text'] def push_to_hub(hf_username: str, hf_token: str, model_dir: str, private: bool = False): api = HfApi(endpoint="https://huggingface.co", token=hf_token) repo_id = f"{hf_username}/{model_dir.split('/')[-1]}" api.create_repo(repo_id=repo_id, repo_type="model", private=private) api.upload_folder(repo_id=repo_id, folder_path=model_dir, commit_message="Upload pruned model") def prune_model(model_name: str, language: str, hf_username: str, hf_token: str, keep_english: bool): st.markdown(f"- Let's prune the [**{model_name}**](https://huggingface.co/{model_name}) model to keep its **{language.capitalize()}** tokens only.") # Load the model and its tokenizer model, tokenizer = load_model_and_tokenizer(model_name) # Calculate parameters for the original model all_params = count_parameters(model) encoder_params = count_parameters(model, layer_name="encoder") embedding_params = count_parameters(model, layer_name="embeddings") st.markdown( f"- The original model has **{all_params/1e6:.1f}M** parameters, of which **{embedding_params/all_params*100:.0f}%** "+ f"(i.e., {embedding_params/1e6:.1f}M params) come from the *embedding matrix* and its {tokenizer.vocab_size} token entries. "+ f"This means that the contextualization of text sequences is actually done by a *{model.config.num_hidden_layers}-layer Transformer encoder* "+ f"with **{encoder_params/1e6:.1f}M** parameters only." ) with st.status(f"Computing the {language.capitalize()} vocabulary...", expanded=True) as status: filtered_tokens = estimate_pruned_vocabulary(tokenizer, language) num_filtered_tokens = len(filtered_tokens) st.write( f"{language.capitalize()} only uses **{num_filtered_tokens/tokenizer.vocab_size*100:.0f}%** "+ f"of the model vocabulary (i.e., {num_filtered_tokens} out of the original {tokenizer.vocab_size} tokens)." ) status.update(state="complete", expanded=True) if keep_english: with st.status(f"Computing the English vocabulary...", expanded=True) as status: english_tokens = estimate_pruned_vocabulary(tokenizer, "english") filtered_tokens.update(english_tokens) st.write(f"Considering the **English** tokens adds **{len(filtered_tokens) - num_filtered_tokens}** tokens to the vocabulary.") num_filtered_tokens = len(filtered_tokens) status.update(state="complete", expanded=True) with st.status("Pruning the model...", expanded=True) as status: st.write("- *Updating the tokenizer*") outdir = f"{language}-{model_name.split('/')[-1]}" # Export the tokenizer to a JSON string and access its vocabulary (list of lists: [[token, score], ...]) tokenizer_json = json.loads(tokenizer.backend_tokenizer.to_str()) original_vocab = tokenizer_json['model']['vocab'] # Build a mapping from tokens to their original IDs original_token_to_id = {entry[0]: idx for idx, entry in enumerate(original_vocab)} # Filter out the tokens to remove and reassign new IDs new_id = 0 new_token_to_id = {} new_id_to_original_id = {} filtered_vocab_entries = [] for token, score in original_vocab: if token in filtered_tokens: filtered_vocab_entries.append([token, score]) new_token_to_id[token] = new_id new_id_to_original_id[new_id] = original_token_to_id[token] new_id += 1 # Update the vocab in the tokenizer JSON and rebuild the tokenizer from the modified JSON tokenizer_json['model']['vocab'] = filtered_vocab_entries new_backend_tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json)) # Create a new tokenizer instance and save it new_tokenizer = PreTrainedTokenizerFast(tokenizer_object=new_backend_tokenizer, **tokenizer.init_kwargs) new_tokenizer.save_pretrained(outdir) st.write("- *Updating the embedding matrix*") new_model = AutoModel.from_pretrained(model_name, trust_remote_code=True) # Create a new embedding matrix and map the original vectors to their new IDs original_embeddings = new_model.get_input_embeddings().weight.data new_embeddings = torch.nn.Embedding( num_embeddings=new_tokenizer.vocab_size, embedding_dim=model.config.hidden_size, padding_idx=new_tokenizer.pad_token_id, ) for new_id in range(new_tokenizer.vocab_size): original_id = new_id_to_original_id.get(new_id) new_embeddings.weight.data[new_id] = original_embeddings[original_id] new_model.set_input_embeddings(new_embeddings) new_model.config.vocab_size = new_tokenizer.vocab_size new_model.save_pretrained(outdir) status.update(state="complete", expanded=True) with st.status("Testing the conversion...", expanded=True) as status: st.write(f"- *Checking the pruned tokenizer*") assert len(new_tokenizer) == num_filtered_tokens, f"ERROR: new tokenizer size ({len(new_tokenizer)}) != number of filtered tokens ({num_filtered_tokens})" assert filtered_tokens == set(new_tokenizer.convert_ids_to_tokens(range(len(new_tokenizer)))), f"ERROR: The new tokenizer vocabulary doesn't match number of the filtered tokens" st.write(f"- *Checking the pruned model*") test_sentence = get_test_sentence(LANGUAGES[language]['nllb_code']) with torch.inference_mode(): emb1 = model(**tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy() emb2 = new_model(**new_tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy() diff = np.abs(emb1 - emb2).max() assert diff < 1e-6, f"ERROR: Some dimensions of the two vectors have a non negligible difference ({diff})" st.write(f"""All good! The output *[cls]* token embedding of the test sentence *"{test_sentence}"* should be similar:""") col1, col2 = st.columns(2) with col1: st.markdown("Original model:") st.code(f"{emb1.tolist()}") with col2: st.markdown("Pruned model:") st.code(f"{emb2.tolist()}") status.update(state="complete", expanded=True) # Show visually the result of the pruning process pruned_all_params = count_parameters(new_model) pruned_encoder_params = count_parameters(new_model, layer_name="encoder") pruned_embedding_params = count_parameters(new_model, layer_name="embeddings") st.markdown(f"The pruned model is **{pruned_all_params/all_params*100:.1f}%** of the original model size.") data = { 'Model': ['Original', 'Pruned'], 'Embedding': [embedding_params / 1e6, pruned_embedding_params / 1e6], 'Encoder': [encoder_params / 1e6, pruned_encoder_params / 1e6] } fig = go.Figure(data=[ go.Bar(name='Embedding matrix', x=data['Model'], y=data['Embedding'], text=data['Embedding'], textposition='inside', marker_color='#E5B4B4'), go.Bar(name='Transformer encoder', x=data['Model'], y=data['Encoder'], text=data['Encoder'], textposition='inside', marker_color='#7FBFE0') ]) fig.update_layout(barmode='stack', yaxis_title='# Params (M)', height=400, margin=dict(t=10, b=10)) fig.update_traces(texttemplate='%{text:.1f}M', textposition='inside', insidetextanchor='middle') st.plotly_chart(fig) # Add a README to the pruned model repo new_model_name = f"{hf_username}/{outdir.split('/')[-1]}" readme_content = textwrap.dedent(f""" --- pipeline_tag: sentence-similarity language: {LANGUAGES[language]['hf_code']} license: mit tags: - passage-retrieval - sentence-similarity - pruned library_name: sentence-transformers base_model: {model_name} base_model_relation: quantized --- # {LANGUAGES[language]['emoji']} {new_model_name.split('/')[-1]} This model is a {100 - pruned_all_params/all_params*100:.1f}% smaller version of [{model_name}](https://huggingface.co/{model_name}) for the {language.capitalize()} language, created using the [mtem-pruner](https://huggingface.co/spaces/antoinelouis/mtem-pruner) space. This pruned model should perform similarly to the original model for {language.capitalize()} language tasks with a much smaller memory footprint. However, it may not perform well for other languages present in the original multilingual model as tokens not commonly used in {language.capitalize()} were removed from the original multilingual model's vocabulary. ## Usage You can use this model with the Transformers library: ```python from transformers import AutoModel, AutoTokenizer model_name = "{new_model_name}" model = AutoModel.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) ``` **Credits**: cc [@antoinelouis](https://huggingface.co/antoinelouis) """) with open(os.path.join(outdir, "README.md"), "w") as f: f.write(readme_content) with st.status("Pushing the pruned model to your Hugging Face account...", expanded=True) as status: push_to_hub(hf_username, hf_token, outdir) shutil.rmtree(outdir) status.update(state="complete", expanded=False) st.markdown("Done! You can now load your pruned model like this:") st.code(f""" from transformers import AutoModel, AutoTokenizer model_name = "{new_model_name}" model = AutoModel.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) """, language="python") def main(): st.header("Multilingual Text Embedding Model Pruner") st.markdown(""" This space helps you create a smaller, language-specific version of a multilingual text embedding model. Here's what it does: 1. 🌎 Takes a state-of-the-art text embedding model that was trained on many languages 2. ✂️ Trims it down to focus on just one language by removing unused tokens from its vocabulary 3. 🚀 Gives you a smaller model that works just as well for your chosen language #### Why is this useful? - 💾 Get the same performance in your language with a much smaller model size - 🌐 Great for low-resource environments with limited RAM Ready to shrink your model? Let's get started! """) model_name = st.selectbox("Choose a multilingual model", MODELS) col1, col2 = st.columns([3, 1]) with col1: language = st.selectbox( "Pick your target language", options=list(LANGUAGES.keys()), format_func=lambda x: f"{LANGUAGES[x]['emoji']} {x.capitalize()}" ) with col2: st.write("") st.write("") keep_english = st.checkbox("Keep English", value=False, help="Keep English tokens in addition to the selected language") col3, col4 = st.columns(2) with col3: hf_username = st.text_input("Your Hugging Face username", placeholder="antoinelouis") with col4: hf_token = st.text_input("Your Hugging Face access token", type="password", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") if st.button("Prune model"): if not hf_username or not hf_token: st.error("Your HF username and access token are required to save the pruned model on your account.") else: _ = whoami(token=hf_token) prune_model(model_name, language, hf_username, hf_token, keep_english) st.markdown( """
Credits to @avidale for inspiration.
""", unsafe_allow_html=True ) if __name__ == "__main__": main()