Spaces:
Running
on
Zero
Running
on
Zero
Anton Bushuiev
commited on
Commit
•
c09238a
1
Parent(s):
b432a65
Implement visualization dropdown and full complex inference
Browse files
app.py
CHANGED
@@ -50,7 +50,7 @@ def process_inputs(inputs, temp_dir):
|
|
50 |
|
51 |
# Prepare PDB input
|
52 |
if pdb_path:
|
53 |
-
#
|
54 |
new_pdb_path = temp_dir / f"pdb/{pdb_path.name.replace('_', '-')}"
|
55 |
new_pdb_path.parent.mkdir(parents=True, exist_ok=True)
|
56 |
shutil.copy(str(pdb_path), str(new_pdb_path))
|
@@ -63,9 +63,13 @@ def process_inputs(inputs, temp_dir):
|
|
63 |
download_pdb(pdb_code, path=pdb_path)
|
64 |
except:
|
65 |
raise gr.Error("PDB download failed.")
|
66 |
-
|
|
|
67 |
partners = list(map(lambda x: x.strip(), partners.split(',')))
|
68 |
|
|
|
|
|
|
|
69 |
# Extract PPI into temp dir
|
70 |
try:
|
71 |
ppi_dir = temp_dir / 'ppi'
|
@@ -80,8 +84,8 @@ def process_inputs(inputs, temp_dir):
|
|
80 |
muts_path = Path(muts_path)
|
81 |
muts = muts_path.read_text()
|
82 |
|
83 |
-
|
84 |
-
|
85 |
# Basic format
|
86 |
try:
|
87 |
muts = list(map(lambda m: Mutation.from_str(m), muts.split(';')))
|
@@ -92,7 +96,7 @@ def process_inputs(inputs, temp_dir):
|
|
92 |
for mut in muts:
|
93 |
for pmut in mut.muts:
|
94 |
if pmut.chain not in partners:
|
95 |
-
raise gr.Error(f'Chain of point mutation {pmut}
|
96 |
|
97 |
# Consistency with provided .pdb
|
98 |
muts_on_interface = []
|
@@ -110,8 +114,8 @@ def process_inputs(inputs, temp_dir):
|
|
110 |
return pdb_path, ppi_path, muts, muts_on_interface
|
111 |
|
112 |
|
113 |
-
def plot_3dmol(pdb_path, ppi_path,
|
114 |
-
# 3DMol.js adapted from https://huggingface.co/spaces/huhlim/cg2all/blob/main/app.py
|
115 |
|
116 |
# Read PDB for 3Dmol.js
|
117 |
with open(pdb_path, "r") as fp:
|
@@ -127,12 +131,12 @@ def plot_3dmol(pdb_path, ppi_path, muts, attn, mut_id=0):
|
|
127 |
ppi_df = ppi_df.groupby(list(Residue._fields)).apply(lambda df: df[df['atom_name'] == 'CA'].iloc[0]).reset_index(drop=True)
|
128 |
ppi_df['id'] = ppi_df.apply(lambda row: ':'.join([row['residue_name'], row['chain_id'], str(row['residue_number']), row['insertion']]), axis=1)
|
129 |
ppi_df['id'] = ppi_df['id'].apply(lambda x: x[:-1] if x[-1] == ':' else x)
|
130 |
-
muts_id = Mutation(
|
131 |
ppi_df['mutated'] = ppi_df.apply(lambda row: row['id'] in muts_id, axis=1)
|
132 |
|
133 |
# Prepare attention coeffictients per residue (normalized sum of direct attention from mutated residues)
|
134 |
attn = torch.nan_to_num(attn, nan=1e-10)
|
135 |
-
attn_sub = attn[:,
|
136 |
idx_mutated = torch.from_numpy(ppi_df.index[ppi_df['mutated']].to_numpy())
|
137 |
attn_sub = fill_diagonal(attn_sub, 1e-10)
|
138 |
attn_mutated = attn_sub[..., idx_mutated, :]
|
@@ -235,7 +239,6 @@ def plot_3dmol(pdb_path, ppi_path, muts, attn, mut_id=0):
|
|
235 |
</script>
|
236 |
</body></html>"""
|
237 |
)
|
238 |
-
print(html)
|
239 |
|
240 |
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
|
241 |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
@@ -246,29 +249,105 @@ def plot_3dmol(pdb_path, ppi_path, muts, attn, mut_id=0):
|
|
246 |
|
247 |
def predict(models, temp_dir, *inputs):
|
248 |
# Process input
|
249 |
-
pdb_path, ppi_path, muts = process_inputs(inputs, temp_dir)
|
250 |
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
raise gr.Error("Prediction failed. Please double check your inputs.")
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
# Create dataframe file
|
265 |
path = 'ppiformer_ddg_predictions.csv'
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
plot = plot_3dmol(pdb_path, ppi_path, muts, attn)
|
270 |
|
271 |
-
|
|
|
|
|
272 |
|
273 |
|
274 |
app = gr.Blocks(theme=gr.themes.Default(primary_hue="green", secondary_hue="pink"))
|
@@ -303,7 +382,7 @@ with app:
|
|
303 |
|
304 |
with gr.Column():
|
305 |
gr.Markdown("## Mutations")
|
306 |
-
muts = gr.Textbox(placeholder="SC16A;FC47A;SC16A,FC47A", label="List of (multi-point) mutations", info="SC16A
|
307 |
muts_path = gr.File(file_count="single", label="Or file with mutations")
|
308 |
|
309 |
examples = gr.Examples(
|
@@ -327,6 +406,8 @@ with app:
|
|
327 |
datatype=["str", "number"],
|
328 |
col_count=(2, "fixed"),
|
329 |
)
|
|
|
|
|
330 |
plot = gr.HTML()
|
331 |
|
332 |
# Download weights from Zenodo
|
@@ -347,8 +428,11 @@ with app:
|
|
347 |
|
348 |
# Main logic
|
349 |
inputs = [pdb_code, pdb_path, partners, muts, muts_path]
|
350 |
-
outputs = [df, df_file,
|
351 |
predict = partial(predict, models, temp_dir)
|
352 |
predict_button.click(predict, inputs=inputs, outputs=outputs)
|
353 |
|
|
|
|
|
|
|
354 |
app.launch(allowed_paths=['./assets'])
|
|
|
50 |
|
51 |
# Prepare PDB input
|
52 |
if pdb_path:
|
53 |
+
# convert file name to PPIRef format
|
54 |
new_pdb_path = temp_dir / f"pdb/{pdb_path.name.replace('_', '-')}"
|
55 |
new_pdb_path.parent.mkdir(parents=True, exist_ok=True)
|
56 |
shutil.copy(str(pdb_path), str(new_pdb_path))
|
|
|
63 |
download_pdb(pdb_code, path=pdb_path)
|
64 |
except:
|
65 |
raise gr.Error("PDB download failed.")
|
66 |
+
|
67 |
+
# Parse partners
|
68 |
partners = list(map(lambda x: x.strip(), partners.split(',')))
|
69 |
|
70 |
+
# Add partners to file name
|
71 |
+
pdb_path = pdb_path.rename(pdb_path.with_stem(f"{pdb_path.stem}_{'_'.join(partners)}"))
|
72 |
+
|
73 |
# Extract PPI into temp dir
|
74 |
try:
|
75 |
ppi_dir = temp_dir / 'ppi'
|
|
|
84 |
muts_path = Path(muts_path)
|
85 |
muts = muts_path.read_text()
|
86 |
|
87 |
+
# Check mutations
|
88 |
+
|
89 |
# Basic format
|
90 |
try:
|
91 |
muts = list(map(lambda m: Mutation.from_str(m), muts.split(';')))
|
|
|
96 |
for mut in muts:
|
97 |
for pmut in mut.muts:
|
98 |
if pmut.chain not in partners:
|
99 |
+
raise gr.Error(f'Chain of point mutation {pmut} is not in the list of partners {partners}.')
|
100 |
|
101 |
# Consistency with provided .pdb
|
102 |
muts_on_interface = []
|
|
|
114 |
return pdb_path, ppi_path, muts, muts_on_interface
|
115 |
|
116 |
|
117 |
+
def plot_3dmol(pdb_path, ppi_path, mut, attn, attn_mut_id=0):
|
118 |
+
# NOTE 3DMol.js adapted from https://huggingface.co/spaces/huhlim/cg2all/blob/main/app.py
|
119 |
|
120 |
# Read PDB for 3Dmol.js
|
121 |
with open(pdb_path, "r") as fp:
|
|
|
131 |
ppi_df = ppi_df.groupby(list(Residue._fields)).apply(lambda df: df[df['atom_name'] == 'CA'].iloc[0]).reset_index(drop=True)
|
132 |
ppi_df['id'] = ppi_df.apply(lambda row: ':'.join([row['residue_name'], row['chain_id'], str(row['residue_number']), row['insertion']]), axis=1)
|
133 |
ppi_df['id'] = ppi_df['id'].apply(lambda x: x[:-1] if x[-1] == ':' else x)
|
134 |
+
muts_id = Mutation.from_str(mut).wt_to_graphein() # flatten ids of all sp muts
|
135 |
ppi_df['mutated'] = ppi_df.apply(lambda row: row['id'] in muts_id, axis=1)
|
136 |
|
137 |
# Prepare attention coeffictients per residue (normalized sum of direct attention from mutated residues)
|
138 |
attn = torch.nan_to_num(attn, nan=1e-10)
|
139 |
+
attn_sub = attn[:, attn_mut_id, 0, :, 0, :, :, :] # models, layers, heads, tokens, tokens
|
140 |
idx_mutated = torch.from_numpy(ppi_df.index[ppi_df['mutated']].to_numpy())
|
141 |
attn_sub = fill_diagonal(attn_sub, 1e-10)
|
142 |
attn_mutated = attn_sub[..., idx_mutated, :]
|
|
|
239 |
</script>
|
240 |
</body></html>"""
|
241 |
)
|
|
|
242 |
|
243 |
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
|
244 |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
|
|
249 |
|
250 |
def predict(models, temp_dir, *inputs):
|
251 |
# Process input
|
252 |
+
pdb_path, ppi_path, muts, muts_on_interface = process_inputs(inputs, temp_dir)
|
253 |
|
254 |
+
# Create dataframe
|
255 |
+
df = pd.DataFrame({
|
256 |
+
'Mutation': muts,
|
257 |
+
'ddG [kcal/mol]': len(muts) * [np.nan],
|
258 |
+
'10A Interface': muts_on_interface,
|
259 |
+
'Attn Id': len(muts) * [np.nan],
|
260 |
+
})
|
261 |
+
|
262 |
+
# Show warning if some mutations are not on the interface
|
263 |
+
muts_not_on_interface = df[~df['10A Interface']]['Mutation'].tolist()
|
264 |
+
n_muts_not_on_interface = len(muts_not_on_interface)
|
265 |
+
if n_muts_not_on_interface:
|
266 |
+
n_muts_warn = 5
|
267 |
+
muts_not_on_interface = ';'.join(muts_not_on_interface[:n_muts_warn])
|
268 |
+
if n_muts_not_on_interface > n_muts_warn:
|
269 |
+
muts_not_on_interface += f'... (and {n_muts_not_on_interface - n_muts_warn} more)'
|
270 |
+
gr.Warning((
|
271 |
+
f"{muts_not_on_interface} {'is' if n_muts_not_on_interface == 1 else 'are'} not on the interface. "
|
272 |
+
"The model will predict the effects of mutations on the whole complex. "
|
273 |
+
"This may lead to less accurate predictions."
|
274 |
+
))
|
275 |
+
|
276 |
+
# Predict using interface for mutations on the interface and using the whole complex otherwise
|
277 |
+
attn_ppi, attn_pdb = None, None
|
278 |
+
for df_sub, path in [
|
279 |
+
[df[df['10A Interface']], ppi_path],
|
280 |
+
[df[~df['10A Interface']], pdb_path]
|
281 |
+
]:
|
282 |
+
if not len(df_sub):
|
283 |
+
continue
|
284 |
+
|
285 |
+
# Predict
|
286 |
+
try:
|
287 |
+
ddg, attn = predict_ddg(models, path, df_sub['Mutation'].tolist(), return_attn=True)
|
288 |
+
except:
|
289 |
+
raise gr.Error("Prediction failed. Please double check your inputs.")
|
290 |
+
ddg = ddg.detach().numpy().tolist()
|
291 |
|
292 |
+
# Update dataframe and attention tensor
|
293 |
+
idx = df_sub.index
|
294 |
+
df.loc[idx, 'ddG [kcal/mol]'] = ddg
|
295 |
+
df.loc[idx, 'Attn Id'] = np.arange(len(idx))
|
|
|
296 |
|
297 |
+
if path == ppi_path:
|
298 |
+
attn_ppi = attn
|
299 |
+
else:
|
300 |
+
attn_pdb = attn
|
301 |
+
df['Attn Id'] = df['Attn Id'].astype(int)
|
302 |
+
|
303 |
+
|
304 |
+
# Round ddG values
|
305 |
+
df['ddG [kcal/mol]'] = df['ddG [kcal/mol]'].round(3)
|
306 |
+
|
307 |
+
# Create PPI-specific dropdown
|
308 |
+
dropdown = gr.Dropdown(
|
309 |
+
df['Mutation'].tolist(), value=df['Mutation'].iloc[0],
|
310 |
+
interactive=True, visible=True, label="Mutation to visualize",
|
311 |
+
)
|
312 |
+
|
313 |
+
# Predefine plot arguments for all dropdown choices
|
314 |
+
dropdown_choices_to_plot_args = {
|
315 |
+
mut: (
|
316 |
+
pdb_path,
|
317 |
+
ppi_path if df[df['Mutation'] == mut]['10A Interface'].iloc[0] else pdb_path,
|
318 |
+
mut,
|
319 |
+
attn_ppi if df[df['Mutation'] == mut]['10A Interface'].iloc[0] else attn_pdb,
|
320 |
+
df[df['Mutation'] == mut]['Attn Id'].iloc[0]
|
321 |
+
)
|
322 |
+
for mut in df['Mutation']
|
323 |
+
}
|
324 |
|
325 |
# Create dataframe file
|
326 |
path = 'ppiformer_ddg_predictions.csv'
|
327 |
+
if n_muts_not_on_interface:
|
328 |
+
df = df[['Mutation', 'ddG [kcal/mol]', '10A Interface']]
|
329 |
+
df.to_csv(path, index=False)
|
330 |
+
df = gr.Dataframe(
|
331 |
+
value=df,
|
332 |
+
headers=['Mutation', 'ddG [kcal/mol]', '10A Interface'],
|
333 |
+
datatype=['str', 'number', 'bool'],
|
334 |
+
col_count=(3, 'fixed'),
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
df = df[['Mutation', 'ddG [kcal/mol]']]
|
338 |
+
df.to_csv(path, index=False)
|
339 |
+
df = gr.Dataframe(
|
340 |
+
value=df,
|
341 |
+
headers=['Mutation', 'ddG [kcal/mol]'],
|
342 |
+
datatype=['str', 'number'],
|
343 |
+
col_count=(2, 'fixed'),
|
344 |
+
)
|
345 |
|
346 |
+
return df, path, dropdown, dropdown_choices_to_plot_args
|
|
|
347 |
|
348 |
+
|
349 |
+
def update_plot(dropdown, dropdown_choices_to_plot_args):
|
350 |
+
return plot_3dmol(*dropdown_choices_to_plot_args[dropdown])
|
351 |
|
352 |
|
353 |
app = gr.Blocks(theme=gr.themes.Default(primary_hue="green", secondary_hue="pink"))
|
|
|
382 |
|
383 |
with gr.Column():
|
384 |
gr.Markdown("## Mutations")
|
385 |
+
muts = gr.Textbox(placeholder="SC16A;FC47A;SC16A,FC47A", label="List of (multi-point) mutations", info="SC16A;FC47A;SC16A,FC47A for three mutations: serine to alanine at position 16 in chain C, phenylalanine to alanine at position 47 in chain C, and their double-point combination")
|
386 |
muts_path = gr.File(file_count="single", label="Or file with mutations")
|
387 |
|
388 |
examples = gr.Examples(
|
|
|
406 |
datatype=["str", "number"],
|
407 |
col_count=(2, "fixed"),
|
408 |
)
|
409 |
+
dropdown = gr.Dropdown(interactive=True, visible=False)
|
410 |
+
dropdown_choices_to_plot_args = gr.State([])
|
411 |
plot = gr.HTML()
|
412 |
|
413 |
# Download weights from Zenodo
|
|
|
428 |
|
429 |
# Main logic
|
430 |
inputs = [pdb_code, pdb_path, partners, muts, muts_path]
|
431 |
+
outputs = [df, df_file, dropdown, dropdown_choices_to_plot_args]
|
432 |
predict = partial(predict, models, temp_dir)
|
433 |
predict_button.click(predict, inputs=inputs, outputs=outputs)
|
434 |
|
435 |
+
# Update plot on dropdown change
|
436 |
+
dropdown.change(update_plot, inputs=[dropdown, dropdown_choices_to_plot_args], outputs=[plot])
|
437 |
+
|
438 |
app.launch(allowed_paths=['./assets'])
|