Spaces:
No application file
No application file
import gradio as gr | |
import requests | |
import os | |
import json | |
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" | |
headers = {"Authorization": f"Bearer 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"} | |
def translate(prompt_ , from_lang, to_lang, input_prompt = "translate this", seed = 42): | |
prompt = f"To say \"{prompt_}\" in {to_lang}, you would say" | |
print(prompt) | |
if len(prompt) == 0: | |
prompt = input_prompt | |
json_ = { | |
"inputs": prompt, | |
"parameters": { | |
"top_p": 0.9, | |
"top_k": 100, | |
"temperature": 1.1, | |
"max_new_tokens": 250, | |
"return_full_text": True, | |
"do_sample": True, | |
"num_beams": 3, | |
"seed": seed, | |
"early_stopping": False, | |
"length_penalty": 0.0, | |
"eos_token_id": None, | |
"repetition_penalty": 3.0, | |
}, | |
"options": { | |
"use_cache": True, | |
"wait_for_model": True, | |
}, | |
} | |
response = requests.post(API_URL, json=json_)#, headers=headers) | |
print(f"Response is : {response}") | |
output = json.loads(response.content.decode("utf-8"))#response.json() | |
print(f"output is : {output}") | |
#output = json.loads(response.content.decode("utf-8")) | |
output_tmp = output[0]['generated_text'] | |
print(f"output_tmp is: {output_tmp}") | |
solution = output_tmp.split(f"\n{to_lang}:")[0] | |
if '\n\n' in solution: | |
final_solution = solution.split("\n\n")[0] | |
else: | |
final_solution = solution | |
return final_solution | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("<h1><center>Bloom Translation</center></h1>") | |
with gr.Row(): | |
from_lang = gr.Dropdown(['English', 'Spanish', 'Hindi' , 'Bangla'], | |
value='English', | |
label='select From language : ') | |
to_lang = gr.Dropdown(['English', 'Spanish', 'Hindi'], | |
value='Hindi', | |
label= 'select to Language : ') | |
input_prompt = gr.Textbox(label="Enter the sentence : ", | |
value=f"Instruction: ... \ninput: \"from sentence\" \n{to_lang} :", | |
lines=6) | |
generated_txt = gr.Textbox(lines=3) | |
b1 = gr.Button("translate") | |
b1.click(translate,inputs=[ input_prompt, from_lang, to_lang], outputs=generated_txt) | |
demo.launch(enable_queue=True, debug=True) | |