Spaces:
No application file
No application file
Delete app.py
Browse files
app.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import os
|
4 |
-
import json
|
5 |
-
|
6 |
-
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
|
7 |
-
headers = {"Authorization": f"Bearer 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"}
|
8 |
-
|
9 |
-
def translate(prompt_ , from_lang, to_lang, input_prompt = "translate this", seed = 42):
|
10 |
-
|
11 |
-
|
12 |
-
prompt = f"To say \"{prompt_}\" in {to_lang}, you would say"
|
13 |
-
print(prompt)
|
14 |
-
if len(prompt) == 0:
|
15 |
-
prompt = input_prompt
|
16 |
-
|
17 |
-
json_ = {
|
18 |
-
"inputs": prompt,
|
19 |
-
"parameters": {
|
20 |
-
"top_p": 0.9,
|
21 |
-
"top_k": 100,
|
22 |
-
"temperature": 1.1,
|
23 |
-
"max_new_tokens": 250,
|
24 |
-
"return_full_text": True,
|
25 |
-
"do_sample": True,
|
26 |
-
"num_beams": 3,
|
27 |
-
"seed": seed,
|
28 |
-
"repetition_penalty": 3.0,
|
29 |
-
},
|
30 |
-
"options": {
|
31 |
-
"use_cache": True,
|
32 |
-
"wait_for_model": True,
|
33 |
-
},
|
34 |
-
}
|
35 |
-
response = requests.post(API_URL, headers=headers, json=json_)
|
36 |
-
print(f"Response is : {response}")
|
37 |
-
output = json.loads(response.content.decode("utf-8"))#response.json()
|
38 |
-
print(f"output is : {output}")
|
39 |
-
#output = json.loads(response.content.decode("utf-8"))
|
40 |
-
output_tmp = output[0]['generated_text']
|
41 |
-
print(f"output_tmp is: {output_tmp}")
|
42 |
-
|
43 |
-
solution = output_tmp.split(f"\n{to_lang}:")[0]
|
44 |
-
|
45 |
-
|
46 |
-
if '\n\n' in solution:
|
47 |
-
final_solution = solution.split("\n\n")[0]
|
48 |
-
else:
|
49 |
-
final_solution = solution
|
50 |
-
|
51 |
-
return final_solution
|
52 |
-
|
53 |
-
demo = gr.Blocks()
|
54 |
-
|
55 |
-
with demo:
|
56 |
-
gr.Markdown("<h1><center>Bloom Translation</center></h1>")
|
57 |
-
|
58 |
-
with gr.Row():
|
59 |
-
from_lang = gr.Dropdown(['English', 'Spanish', 'Hindi' , 'Bangla'],
|
60 |
-
value='English',
|
61 |
-
label='select From language : ')
|
62 |
-
with gr.Row():
|
63 |
-
to_lang = gr.Dropdown(['English', 'Spanish', 'Hindi'],
|
64 |
-
value='Hindi',
|
65 |
-
label= 'select to Language : ')
|
66 |
-
|
67 |
-
input_prompt = gr.Textbox(label="Enter the sentence : ",
|
68 |
-
value=f"Please write the text here :",
|
69 |
-
lines=6)
|
70 |
-
|
71 |
-
generated_txt = gr.Textbox(lines=3)
|
72 |
-
|
73 |
-
b1 = gr.Button("translate")
|
74 |
-
b1.click(translate,inputs=[ input_prompt, from_lang, to_lang], outputs=generated_txt)
|
75 |
-
|
76 |
-
demo.launch(enable_queue=True, debug=True)
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|