import gradio as gr import librosa from transformers import AutoFeatureExtractor, pipeline def load_and_fix_data(input_file, model_sampling_rate): speech, sample_rate = librosa.load(input_file) if len(speech.shape) > 1: speech = speech[:, 0] + speech[:, 1] if sample_rate != model_sampling_rate: speech = librosa.resample(speech, sample_rate, model_sampling_rate) return speech feature_extractor = AutoFeatureExtractor.from_pretrained( "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" ) sampling_rate = feature_extractor.sampling_rate asr = pipeline( "automatic-speech-recognition", model="anuragshas/wav2vec2-xls-r-1b-hi-with-lm" ) def predict_and_ctc_lm_decode(input_file): speech = load_and_fix_data(input_file, sampling_rate) transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1) return transcribed_text["text"] gr.Interface( predict_and_ctc_lm_decode, inputs=[ gr.inputs.Audio(source="upload", type="filepath", label="Record your audio") ], outputs=[gr.outputs.Textbox()], examples=[["example1.wave"]], title="Hindi ASR using Wav2Vec2-1B with LM", description="Built during Robust Speech Event", layout="horizontal", theme="huggingface", ).launch(enable_queue=True)