anuragshas
commited on
Commit
•
f2874d4
1
Parent(s):
da25b85
Initial Commit
Browse files- app.py +24 -0
- models/default_lineup.json +8 -0
- models/hindi/hi_scripts.json +25 -0
- models/hindi/hi_v1_model.pth +3 -0
- models/hindi/hi_v2_model.pth +3 -0
- xlit_src.py +868 -0
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from xlit_src import XlitEngine
|
3 |
+
|
4 |
+
|
5 |
+
def transliterate(input_text):
|
6 |
+
engine = XlitEngine()
|
7 |
+
result = engine.translit_sentence(input_text)
|
8 |
+
return result
|
9 |
+
|
10 |
+
|
11 |
+
input_box = gr.inputs.Textbox(type="str", label="Input Text")
|
12 |
+
target = gr.outputs.Textbox()
|
13 |
+
|
14 |
+
iface = gr.Interface(
|
15 |
+
transliterate,
|
16 |
+
input_box,
|
17 |
+
target,
|
18 |
+
title="English to Hindi Transliteration",
|
19 |
+
description='Model for Translating English to Hindi using a Character-level recurrent sequence-to-sequence trained with <a href="http://workshop.colips.org/news2018/dataset.html">NEWS2018 DATASET_04</a>',
|
20 |
+
article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a> . Using training and inference script from <a href="https://github.com/AI4Bharat/IndianNLP-Transliteration.git">AI4Bharat/IndianNLP-Transliteration</a>.',
|
21 |
+
examples=["Hi.", "Wait!", "Namaste"],
|
22 |
+
)
|
23 |
+
|
24 |
+
iface.launch(enable_queue=True)
|
models/default_lineup.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hi": {
|
3 |
+
"name" : "Hindi - हिंदी",
|
4 |
+
"eng_name": "hindi",
|
5 |
+
"script" : "hindi/hi_scripts.json",
|
6 |
+
"weight" : "hindi/hi_v1_model.pth"
|
7 |
+
}
|
8 |
+
}
|
models/hindi/hi_scripts.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"WARNING" : " !!! Do not modify the Order of Glyph List !!!",
|
3 |
+
"UNICODE" : {"name": "devanagari", "begin":2304, "end":2431},
|
4 |
+
"LANGUAGE": "hindi",
|
5 |
+
|
6 |
+
"glyphs" : [
|
7 |
+
|
8 |
+
"ऄ", "अ", "आ", "इ", "ई", "उ", "ऊ","ऍ", "ऎ", "ए", "ऐ",
|
9 |
+
"ऑ", "ऒ", "ओ", "औ","ऋ","ॠ","ऌ","ॡ","ॲ", "ॐ",
|
10 |
+
"क", "ख", "ग", "घ", "ङ", "च", "छ", "ज", "झ", "ञ", "ट", "ठ", "ड", "ढ", "ण",
|
11 |
+
"त", "थ", "द", "ध", "न", "ऩ", "प", "फ", "ब", "भ", "म", "य", "र", "ऱ", "ल",
|
12 |
+
"ळ", "ऴ", "व", "श", "ष", "स", "ह", "क़", "ख़", "ग़", "ज़", "ड़", "ढ़", "फ़", "य़",
|
13 |
+
"्", "ा", "ि", "ी", "ु", "ू", "ॅ", "ॆ", "े", "ै", "ॉ", "ॊ", "ो", "ौ",
|
14 |
+
"ृ", "ॄ", "ॢ", "ॣ", "ँ", "ं", "ः", "़", "॑", "ऽ", "॥",
|
15 |
+
"\u200c", "\u200d"
|
16 |
+
|
17 |
+
],
|
18 |
+
|
19 |
+
"numsym_map" : {
|
20 |
+
"0" : ["०"], "1" : ["१"], "2" : ["२"], "3" : ["३"], "4" : ["४"],
|
21 |
+
"5" : ["५"], "6" : ["६"], "7" : ["७"], "8" : ["८"], "9" : ["९"],
|
22 |
+
"." : ["।", "॰"]
|
23 |
+
}
|
24 |
+
|
25 |
+
}
|
models/hindi/hi_v1_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cca1ea5d19fd507934e175eba7868f02a71826a046345fa6f4fccc3058424881
|
3 |
+
size 40927419
|
models/hindi/hi_v2_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89d3dd4e5fa7ea355c194fce3ecce1fd5e953e08784db26cacbe5993d1cd4eae
|
3 |
+
size 40927419
|
xlit_src.py
ADDED
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import enum
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import json
|
11 |
+
|
12 |
+
F_DIR = os.path.dirname(os.path.realpath(__file__))
|
13 |
+
|
14 |
+
|
15 |
+
class XlitError(enum.Enum):
|
16 |
+
lang_err = "Unsupported langauge ID requested ;( Please check available languages."
|
17 |
+
string_err = "String passed is incompatable ;("
|
18 |
+
internal_err = "Internal crash ;("
|
19 |
+
unknown_err = "Unknown Failure"
|
20 |
+
loading_err = "Loading failed ;( Check if metadata/paths are correctly configured."
|
21 |
+
|
22 |
+
|
23 |
+
class Encoder(nn.Module):
|
24 |
+
"""
|
25 |
+
Simple RNN based encoder network
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
input_dim,
|
31 |
+
embed_dim,
|
32 |
+
hidden_dim,
|
33 |
+
rnn_type="gru",
|
34 |
+
layers=1,
|
35 |
+
bidirectional=False,
|
36 |
+
dropout=0,
|
37 |
+
device="cpu",
|
38 |
+
):
|
39 |
+
super(Encoder, self).__init__()
|
40 |
+
|
41 |
+
self.input_dim = input_dim # src_vocab_sz
|
42 |
+
self.enc_embed_dim = embed_dim
|
43 |
+
self.enc_hidden_dim = hidden_dim
|
44 |
+
self.enc_rnn_type = rnn_type
|
45 |
+
self.enc_layers = layers
|
46 |
+
self.enc_directions = 2 if bidirectional else 1
|
47 |
+
self.device = device
|
48 |
+
|
49 |
+
self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)
|
50 |
+
|
51 |
+
if self.enc_rnn_type == "gru":
|
52 |
+
self.enc_rnn = nn.GRU(
|
53 |
+
input_size=self.enc_embed_dim,
|
54 |
+
hidden_size=self.enc_hidden_dim,
|
55 |
+
num_layers=self.enc_layers,
|
56 |
+
bidirectional=bidirectional,
|
57 |
+
)
|
58 |
+
elif self.enc_rnn_type == "lstm":
|
59 |
+
self.enc_rnn = nn.LSTM(
|
60 |
+
input_size=self.enc_embed_dim,
|
61 |
+
hidden_size=self.enc_hidden_dim,
|
62 |
+
num_layers=self.enc_layers,
|
63 |
+
bidirectional=bidirectional,
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
raise Exception("unknown RNN type mentioned")
|
67 |
+
|
68 |
+
def forward(self, x, x_sz, hidden=None):
|
69 |
+
"""
|
70 |
+
x_sz: (batch_size, 1) - Unpadded sequence lengths used for pack_pad
|
71 |
+
|
72 |
+
Return:
|
73 |
+
output: (batch_size, max_length, hidden_dim)
|
74 |
+
hidden: (n_layer*num_directions, batch_size, hidden_dim) | if LSTM tuple -(h_n, c_n)
|
75 |
+
|
76 |
+
"""
|
77 |
+
batch_sz = x.shape[0]
|
78 |
+
# x: batch_size, max_length, enc_embed_dim
|
79 |
+
x = self.embedding(x)
|
80 |
+
|
81 |
+
## pack the padded data
|
82 |
+
# x: max_length, batch_size, enc_embed_dim -> for pack_pad
|
83 |
+
x = x.permute(1, 0, 2)
|
84 |
+
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
|
85 |
+
|
86 |
+
# output: packed_size, batch_size, enc_embed_dim --> hidden from all timesteps
|
87 |
+
# hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
|
88 |
+
output, hidden = self.enc_rnn(x)
|
89 |
+
|
90 |
+
## pad the sequence to the max length in the batch
|
91 |
+
# output: max_length, batch_size, enc_emb_dim*directions)
|
92 |
+
output, _ = nn.utils.rnn.pad_packed_sequence(output)
|
93 |
+
|
94 |
+
# output: batch_size, max_length, hidden_dim
|
95 |
+
output = output.permute(1, 0, 2)
|
96 |
+
|
97 |
+
return output, hidden
|
98 |
+
|
99 |
+
|
100 |
+
class Decoder(nn.Module):
|
101 |
+
"""
|
102 |
+
Used as decoder stage
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
output_dim,
|
108 |
+
embed_dim,
|
109 |
+
hidden_dim,
|
110 |
+
rnn_type="gru",
|
111 |
+
layers=1,
|
112 |
+
use_attention=True,
|
113 |
+
enc_outstate_dim=None, # enc_directions * enc_hidden_dim
|
114 |
+
dropout=0,
|
115 |
+
device="cpu",
|
116 |
+
):
|
117 |
+
super(Decoder, self).__init__()
|
118 |
+
|
119 |
+
self.output_dim = output_dim # tgt_vocab_sz
|
120 |
+
self.dec_hidden_dim = hidden_dim
|
121 |
+
self.dec_embed_dim = embed_dim
|
122 |
+
self.dec_rnn_type = rnn_type
|
123 |
+
self.dec_layers = layers
|
124 |
+
self.use_attention = use_attention
|
125 |
+
self.device = device
|
126 |
+
if self.use_attention:
|
127 |
+
self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
|
128 |
+
else:
|
129 |
+
self.enc_outstate_dim = 0
|
130 |
+
|
131 |
+
self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)
|
132 |
+
|
133 |
+
if self.dec_rnn_type == "gru":
|
134 |
+
self.dec_rnn = nn.GRU(
|
135 |
+
input_size=self.dec_embed_dim
|
136 |
+
+ self.enc_outstate_dim, # to concat attention_output
|
137 |
+
hidden_size=self.dec_hidden_dim, # previous Hidden
|
138 |
+
num_layers=self.dec_layers,
|
139 |
+
batch_first=True,
|
140 |
+
)
|
141 |
+
elif self.dec_rnn_type == "lstm":
|
142 |
+
self.dec_rnn = nn.LSTM(
|
143 |
+
input_size=self.dec_embed_dim
|
144 |
+
+ self.enc_outstate_dim, # to concat attention_output
|
145 |
+
hidden_size=self.dec_hidden_dim, # previous Hidden
|
146 |
+
num_layers=self.dec_layers,
|
147 |
+
batch_first=True,
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
raise Exception("unknown RNN type mentioned")
|
151 |
+
|
152 |
+
self.fc = nn.Sequential(
|
153 |
+
nn.Linear(self.dec_hidden_dim, self.dec_embed_dim),
|
154 |
+
nn.LeakyReLU(),
|
155 |
+
# nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
|
156 |
+
nn.Linear(self.dec_embed_dim, self.output_dim),
|
157 |
+
)
|
158 |
+
|
159 |
+
##----- Attention ----------
|
160 |
+
if self.use_attention:
|
161 |
+
self.W1 = nn.Linear(self.enc_outstate_dim, self.dec_hidden_dim)
|
162 |
+
self.W2 = nn.Linear(self.dec_hidden_dim, self.dec_hidden_dim)
|
163 |
+
self.V = nn.Linear(self.dec_hidden_dim, 1)
|
164 |
+
|
165 |
+
def attention(self, x, hidden, enc_output):
|
166 |
+
"""
|
167 |
+
x: (batch_size, 1, dec_embed_dim) -> after Embedding
|
168 |
+
enc_output: batch_size, max_length, enc_hidden_dim *num_directions
|
169 |
+
hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
|
170 |
+
"""
|
171 |
+
|
172 |
+
## perform addition to calculate the score
|
173 |
+
|
174 |
+
# hidden_with_time_axis: batch_size, 1, hidden_dim
|
175 |
+
## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
|
176 |
+
hidden_with_time_axis = torch.sum(hidden, axis=0)
|
177 |
+
|
178 |
+
hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)
|
179 |
+
|
180 |
+
# score: batch_size, max_length, hidden_dim
|
181 |
+
score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))
|
182 |
+
|
183 |
+
# attention_weights: batch_size, max_length, 1
|
184 |
+
# we get 1 at the last axis because we are applying score to self.V
|
185 |
+
attention_weights = torch.softmax(self.V(score), dim=1)
|
186 |
+
|
187 |
+
# context_vector shape after sum == (batch_size, hidden_dim)
|
188 |
+
context_vector = attention_weights * enc_output
|
189 |
+
context_vector = torch.sum(context_vector, dim=1)
|
190 |
+
# context_vector: batch_size, 1, hidden_dim
|
191 |
+
context_vector = context_vector.unsqueeze(1)
|
192 |
+
|
193 |
+
# attend_out (batch_size, 1, dec_embed_dim + hidden_size)
|
194 |
+
attend_out = torch.cat((context_vector, x), -1)
|
195 |
+
|
196 |
+
return attend_out, attention_weights
|
197 |
+
|
198 |
+
def forward(self, x, hidden, enc_output):
|
199 |
+
"""
|
200 |
+
x: (batch_size, 1)
|
201 |
+
enc_output: batch_size, max_length, dec_embed_dim
|
202 |
+
hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)
|
203 |
+
"""
|
204 |
+
if (hidden is None) and (self.use_attention is False):
|
205 |
+
raise Exception("No use of a decoder with No attention and No Hidden")
|
206 |
+
|
207 |
+
batch_sz = x.shape[0]
|
208 |
+
|
209 |
+
if hidden is None:
|
210 |
+
# hidden: n_layers, batch_size, hidden_dim
|
211 |
+
hid_for_att = torch.zeros(
|
212 |
+
(self.dec_layers, batch_sz, self.dec_hidden_dim)
|
213 |
+
).to(self.device)
|
214 |
+
elif self.dec_rnn_type == "lstm":
|
215 |
+
hid_for_att = hidden[0] # h_n
|
216 |
+
else:
|
217 |
+
hid_for_att = hidden
|
218 |
+
|
219 |
+
# x (batch_size, 1, dec_embed_dim) -> after embedding
|
220 |
+
x = self.embedding(x)
|
221 |
+
|
222 |
+
if self.use_attention:
|
223 |
+
# x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
|
224 |
+
# aw: (batch_size, max_length, 1)
|
225 |
+
x, aw = self.attention(x, hid_for_att, enc_output)
|
226 |
+
else:
|
227 |
+
x, aw = x, 0
|
228 |
+
|
229 |
+
# passing the concatenated vector to the GRU
|
230 |
+
# output: (batch_size, n_layers, hidden_size)
|
231 |
+
# hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
|
232 |
+
output, hidden = (
|
233 |
+
self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)
|
234 |
+
)
|
235 |
+
|
236 |
+
# output :shp: (batch_size * 1, hidden_size)
|
237 |
+
output = output.view(-1, output.size(2))
|
238 |
+
|
239 |
+
# output :shp: (batch_size * 1, output_dim)
|
240 |
+
output = self.fc(output)
|
241 |
+
|
242 |
+
return output, hidden, aw
|
243 |
+
|
244 |
+
|
245 |
+
class Seq2Seq(nn.Module):
|
246 |
+
"""
|
247 |
+
Used to construct seq2seq architecture with encoder decoder objects
|
248 |
+
"""
|
249 |
+
|
250 |
+
def __init__(
|
251 |
+
self, encoder, decoder, pass_enc2dec_hid=False, dropout=0, device="cpu"
|
252 |
+
):
|
253 |
+
super(Seq2Seq, self).__init__()
|
254 |
+
|
255 |
+
self.encoder = encoder
|
256 |
+
self.decoder = decoder
|
257 |
+
self.device = device
|
258 |
+
self.pass_enc2dec_hid = pass_enc2dec_hid
|
259 |
+
|
260 |
+
if self.pass_enc2dec_hid:
|
261 |
+
assert (
|
262 |
+
decoder.dec_hidden_dim == encoder.enc_hidden_dim
|
263 |
+
), "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
|
264 |
+
if decoder.use_attention:
|
265 |
+
assert (
|
266 |
+
decoder.enc_outstate_dim
|
267 |
+
== encoder.enc_directions * encoder.enc_hidden_dim
|
268 |
+
), "Set `enc_out_dim` correctly in decoder"
|
269 |
+
assert (
|
270 |
+
self.pass_enc2dec_hid or decoder.use_attention
|
271 |
+
), "No use of a decoder with No attention and No Hidden from Encoder"
|
272 |
+
|
273 |
+
def forward(self, src, tgt, src_sz, teacher_forcing_ratio=0):
|
274 |
+
"""
|
275 |
+
src: (batch_size, sequence_len.padded)
|
276 |
+
tgt: (batch_size, sequence_len.padded)
|
277 |
+
src_sz: [batch_size, 1] - Unpadded sequence lengths
|
278 |
+
"""
|
279 |
+
batch_size = tgt.shape[0]
|
280 |
+
|
281 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
282 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
283 |
+
enc_output, enc_hidden = self.encoder(src, src_sz)
|
284 |
+
|
285 |
+
if self.pass_enc2dec_hid:
|
286 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
287 |
+
dec_hidden = enc_hidden
|
288 |
+
else:
|
289 |
+
# dec_hidden -> Will be initialized to zeros internally
|
290 |
+
dec_hidden = None
|
291 |
+
|
292 |
+
# pred_vecs: (batch_size, output_dim, sequence_sz) -> shape required for CELoss
|
293 |
+
pred_vecs = torch.zeros(batch_size, self.decoder.output_dim, tgt.size(1)).to(
|
294 |
+
self.device
|
295 |
+
)
|
296 |
+
|
297 |
+
# dec_input: (batch_size, 1)
|
298 |
+
dec_input = tgt[:, 0].unsqueeze(1) # initialize to start token
|
299 |
+
pred_vecs[:, 1, 0] = 1 # Initialize to start tokens all batches
|
300 |
+
for t in range(1, tgt.size(1)):
|
301 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
302 |
+
# dec_output: batch_size, output_dim
|
303 |
+
# dec_input: (batch_size, 1)
|
304 |
+
dec_output, dec_hidden, _ = self.decoder(
|
305 |
+
dec_input,
|
306 |
+
dec_hidden,
|
307 |
+
enc_output,
|
308 |
+
)
|
309 |
+
pred_vecs[:, :, t] = dec_output
|
310 |
+
|
311 |
+
# # prediction: batch_size
|
312 |
+
prediction = torch.argmax(dec_output, dim=1)
|
313 |
+
|
314 |
+
# Teacher Forcing
|
315 |
+
if random.random() < teacher_forcing_ratio:
|
316 |
+
dec_input = tgt[:, t].unsqueeze(1)
|
317 |
+
else:
|
318 |
+
dec_input = prediction.unsqueeze(1)
|
319 |
+
|
320 |
+
return pred_vecs # (batch_size, output_dim, sequence_sz)
|
321 |
+
|
322 |
+
def inference(self, src, max_tgt_sz=50, debug=0):
|
323 |
+
"""
|
324 |
+
single input only, No batch Inferencing
|
325 |
+
src: (sequence_len)
|
326 |
+
debug: if True will return attention weights also
|
327 |
+
"""
|
328 |
+
batch_size = 1
|
329 |
+
start_tok = src[0]
|
330 |
+
end_tok = src[-1]
|
331 |
+
src_sz = torch.tensor([len(src)])
|
332 |
+
src_ = src.unsqueeze(0)
|
333 |
+
|
334 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
335 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
336 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
337 |
+
|
338 |
+
if self.pass_enc2dec_hid:
|
339 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
340 |
+
dec_hidden = enc_hidden
|
341 |
+
else:
|
342 |
+
# dec_hidden -> Will be initialized to zeros internally
|
343 |
+
dec_hidden = None
|
344 |
+
|
345 |
+
# pred_arr: (sequence_sz, 1) -> shape required for CELoss
|
346 |
+
pred_arr = torch.zeros(max_tgt_sz, 1).to(self.device)
|
347 |
+
if debug:
|
348 |
+
attend_weight_arr = torch.zeros(max_tgt_sz, len(src)).to(self.device)
|
349 |
+
|
350 |
+
# dec_input: (batch_size, 1)
|
351 |
+
dec_input = start_tok.view(1, 1) # initialize to start token
|
352 |
+
pred_arr[0] = start_tok.view(1, 1) # initialize to start token
|
353 |
+
for t in range(max_tgt_sz):
|
354 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
355 |
+
# dec_output: batch_size, output_dim
|
356 |
+
# dec_input: (batch_size, 1)
|
357 |
+
dec_output, dec_hidden, aw = self.decoder(
|
358 |
+
dec_input,
|
359 |
+
dec_hidden,
|
360 |
+
enc_output,
|
361 |
+
)
|
362 |
+
# prediction :shp: (1,1)
|
363 |
+
prediction = torch.argmax(dec_output, dim=1)
|
364 |
+
dec_input = prediction.unsqueeze(1)
|
365 |
+
pred_arr[t] = prediction
|
366 |
+
if debug:
|
367 |
+
attend_weight_arr[t] = aw.squeeze(-1)
|
368 |
+
|
369 |
+
if torch.eq(prediction, end_tok):
|
370 |
+
break
|
371 |
+
|
372 |
+
if debug:
|
373 |
+
return pred_arr.squeeze(), attend_weight_arr
|
374 |
+
# pred_arr :shp: (sequence_len)
|
375 |
+
return pred_arr.squeeze().to(dtype=torch.long)
|
376 |
+
|
377 |
+
def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
|
378 |
+
"""Active beam Search based decoding
|
379 |
+
src: (sequence_len)
|
380 |
+
"""
|
381 |
+
|
382 |
+
def _avg_score(p_tup):
|
383 |
+
"""Used for Sorting
|
384 |
+
TODO: Dividing by length of sequence power alpha as hyperparam
|
385 |
+
"""
|
386 |
+
return p_tup[0]
|
387 |
+
|
388 |
+
batch_size = 1
|
389 |
+
start_tok = src[0]
|
390 |
+
end_tok = src[-1]
|
391 |
+
src_sz = torch.tensor([len(src)])
|
392 |
+
src_ = src.unsqueeze(0)
|
393 |
+
|
394 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
395 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
396 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
397 |
+
|
398 |
+
if self.pass_enc2dec_hid:
|
399 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
400 |
+
init_dec_hidden = enc_hidden
|
401 |
+
else:
|
402 |
+
# dec_hidden -> Will be initialized to zeros internally
|
403 |
+
init_dec_hidden = None
|
404 |
+
|
405 |
+
# top_pred[][0] = Σ-log_softmax
|
406 |
+
# top_pred[][1] = sequence torch.tensor shape: (1)
|
407 |
+
# top_pred[][2] = dec_hidden
|
408 |
+
top_pred_list = [(0, start_tok.unsqueeze(0), init_dec_hidden)]
|
409 |
+
|
410 |
+
for t in range(max_tgt_sz):
|
411 |
+
cur_pred_list = []
|
412 |
+
|
413 |
+
for p_tup in top_pred_list:
|
414 |
+
if p_tup[1][-1] == end_tok:
|
415 |
+
cur_pred_list.append(p_tup)
|
416 |
+
continue
|
417 |
+
|
418 |
+
# dec_hidden: dec_layers, 1, hidden_dim
|
419 |
+
# dec_output: 1, output_dim
|
420 |
+
dec_output, dec_hidden, _ = self.decoder(
|
421 |
+
x=p_tup[1][-1].view(1, 1), # dec_input: (1,1)
|
422 |
+
hidden=p_tup[2],
|
423 |
+
enc_output=enc_output,
|
424 |
+
)
|
425 |
+
|
426 |
+
## π{prob} = Σ{log(prob)} -> to prevent diminishing
|
427 |
+
# dec_output: (1, output_dim)
|
428 |
+
dec_output = nn.functional.log_softmax(dec_output, dim=1)
|
429 |
+
# pred_topk.values & pred_topk.indices: (1, beam_width)
|
430 |
+
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
|
431 |
+
|
432 |
+
for i in range(beam_width):
|
433 |
+
sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
|
434 |
+
# seq_tensor_ : (seq_len)
|
435 |
+
seq_tensor_ = torch.cat((p_tup[1], pred_topk.indices[0][i].view(1)))
|
436 |
+
|
437 |
+
cur_pred_list.append((sig_logsmx_, seq_tensor_, dec_hidden))
|
438 |
+
|
439 |
+
cur_pred_list.sort(key=_avg_score, reverse=True) # Maximized order
|
440 |
+
top_pred_list = cur_pred_list[:beam_width]
|
441 |
+
|
442 |
+
# check if end_tok of all topk
|
443 |
+
end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
|
444 |
+
if beam_width == sum(end_flags_):
|
445 |
+
break
|
446 |
+
|
447 |
+
pred_tnsr_list = [t[1] for t in top_pred_list]
|
448 |
+
|
449 |
+
return pred_tnsr_list
|
450 |
+
|
451 |
+
def passive_beam_inference(self, src, beam_width=7, max_tgt_sz=50):
|
452 |
+
"""
|
453 |
+
Passive Beam search based inference
|
454 |
+
src: (sequence_len)
|
455 |
+
"""
|
456 |
+
|
457 |
+
def _avg_score(p_tup):
|
458 |
+
"""Used for Sorting
|
459 |
+
TODO: Dividing by length of sequence power alpha as hyperparam
|
460 |
+
"""
|
461 |
+
return p_tup[0]
|
462 |
+
|
463 |
+
def _beam_search_topk(topk_obj, start_tok, beam_width):
|
464 |
+
"""search for sequence with maxim prob
|
465 |
+
topk_obj[x]: .values & .indices shape:(1, beam_width)
|
466 |
+
"""
|
467 |
+
# top_pred_list[x]: tuple(prob, seq_tensor)
|
468 |
+
top_pred_list = [
|
469 |
+
(0, start_tok.unsqueeze(0)),
|
470 |
+
]
|
471 |
+
|
472 |
+
for obj in topk_obj:
|
473 |
+
new_lst_ = list()
|
474 |
+
for itm in top_pred_list:
|
475 |
+
for i in range(beam_width):
|
476 |
+
sig_logsmx_ = itm[0] + obj.values[0][i]
|
477 |
+
seq_tensor_ = torch.cat((itm[1], obj.indices[0][i].view(1)))
|
478 |
+
new_lst_.append((sig_logsmx_, seq_tensor_))
|
479 |
+
|
480 |
+
new_lst_.sort(key=_avg_score, reverse=True)
|
481 |
+
top_pred_list = new_lst_[:beam_width]
|
482 |
+
return top_pred_list
|
483 |
+
|
484 |
+
batch_size = 1
|
485 |
+
start_tok = src[0]
|
486 |
+
end_tok = src[-1]
|
487 |
+
src_sz = torch.tensor([len(src)])
|
488 |
+
src_ = src.unsqueeze(0)
|
489 |
+
|
490 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
491 |
+
|
492 |
+
if self.pass_enc2dec_hid:
|
493 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
494 |
+
dec_hidden = enc_hidden
|
495 |
+
else:
|
496 |
+
# dec_hidden -> Will be initialized to zeros internally
|
497 |
+
dec_hidden = None
|
498 |
+
|
499 |
+
# dec_input: (1, 1)
|
500 |
+
dec_input = start_tok.view(1, 1) # initialize to start token
|
501 |
+
|
502 |
+
topk_obj = []
|
503 |
+
for t in range(max_tgt_sz):
|
504 |
+
dec_output, dec_hidden, aw = self.decoder(
|
505 |
+
dec_input,
|
506 |
+
dec_hidden,
|
507 |
+
enc_output,
|
508 |
+
)
|
509 |
+
|
510 |
+
## π{prob} = Σ{log(prob)} -> to prevent diminishing
|
511 |
+
# dec_output: (1, output_dim)
|
512 |
+
dec_output = nn.functional.log_softmax(dec_output, dim=1)
|
513 |
+
# pred_topk.values & pred_topk.indices: (1, beam_width)
|
514 |
+
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
|
515 |
+
|
516 |
+
topk_obj.append(pred_topk)
|
517 |
+
|
518 |
+
# dec_input: (1, 1)
|
519 |
+
dec_input = pred_topk.indices[0][0].view(1, 1)
|
520 |
+
if torch.eq(dec_input, end_tok):
|
521 |
+
break
|
522 |
+
|
523 |
+
top_pred_list = _beam_search_topk(topk_obj, start_tok, beam_width)
|
524 |
+
pred_tnsr_list = [t[1] for t in top_pred_list]
|
525 |
+
|
526 |
+
return pred_tnsr_list
|
527 |
+
|
528 |
+
|
529 |
+
class GlyphStrawboss:
|
530 |
+
def __init__(self, glyphs="en"):
|
531 |
+
"""list of letters in a language in unicode
|
532 |
+
lang: List with unicodes
|
533 |
+
"""
|
534 |
+
if glyphs == "en":
|
535 |
+
# Smallcase alone
|
536 |
+
self.glyphs = [chr(alpha) for alpha in range(97, 123)] + ["é", "è", "á"]
|
537 |
+
else:
|
538 |
+
self.dossier = json.load(open(glyphs, encoding="utf-8"))
|
539 |
+
self.numsym_map = self.dossier["numsym_map"]
|
540 |
+
self.glyphs = self.dossier["glyphs"]
|
541 |
+
|
542 |
+
self.indoarab_num = [chr(alpha) for alpha in range(48, 58)]
|
543 |
+
|
544 |
+
self.char2idx = {}
|
545 |
+
self.idx2char = {}
|
546 |
+
self._create_index()
|
547 |
+
|
548 |
+
def _create_index(self):
|
549 |
+
|
550 |
+
self.char2idx["_"] = 0 # pad
|
551 |
+
self.char2idx["$"] = 1 # start
|
552 |
+
self.char2idx["#"] = 2 # end
|
553 |
+
self.char2idx["*"] = 3 # Mask
|
554 |
+
self.char2idx["'"] = 4 # apostrophe U+0027
|
555 |
+
self.char2idx["%"] = 5 # unused
|
556 |
+
self.char2idx["!"] = 6 # unused
|
557 |
+
self.char2idx["?"] = 7
|
558 |
+
self.char2idx[":"] = 8
|
559 |
+
self.char2idx[" "] = 9
|
560 |
+
self.char2idx["-"] = 10
|
561 |
+
self.char2idx[","] = 11
|
562 |
+
self.char2idx["."] = 12
|
563 |
+
self.char2idx["("] = 13
|
564 |
+
self.char2idx[")"] = 14
|
565 |
+
self.char2idx["/"] = 15
|
566 |
+
self.char2idx["^"] = 16
|
567 |
+
|
568 |
+
for idx, char in enumerate(self.indoarab_num):
|
569 |
+
self.char2idx[char] = idx + 17
|
570 |
+
# letter to index mapping
|
571 |
+
for idx, char in enumerate(self.glyphs):
|
572 |
+
self.char2idx[char] = idx + 27 # +20 token initially
|
573 |
+
|
574 |
+
# index to letter mapping
|
575 |
+
for char, idx in self.char2idx.items():
|
576 |
+
self.idx2char[idx] = char
|
577 |
+
|
578 |
+
def size(self):
|
579 |
+
return len(self.char2idx)
|
580 |
+
|
581 |
+
def word2xlitvec(self, word):
|
582 |
+
"""Converts given string of gyphs(word) to vector(numpy)
|
583 |
+
Also adds tokens for start and end
|
584 |
+
"""
|
585 |
+
try:
|
586 |
+
vec = [self.char2idx["$"]] # start token
|
587 |
+
for i in list(word):
|
588 |
+
vec.append(self.char2idx[i])
|
589 |
+
vec.append(self.char2idx["#"]) # end token
|
590 |
+
|
591 |
+
vec = np.asarray(vec, dtype=np.int64)
|
592 |
+
return vec
|
593 |
+
|
594 |
+
except Exception as error:
|
595 |
+
print("Error In word:", word, "Error Char not in Token:", error)
|
596 |
+
sys.exit()
|
597 |
+
|
598 |
+
def xlitvec2word(self, vector):
|
599 |
+
"""Converts vector(numpy) to string of glyphs(word)"""
|
600 |
+
char_list = []
|
601 |
+
for i in vector:
|
602 |
+
char_list.append(self.idx2char[i])
|
603 |
+
|
604 |
+
word = "".join(char_list).replace("$", "").replace("#", "") # remove tokens
|
605 |
+
word = word.replace("_", "").replace("*", "") # remove tokens
|
606 |
+
return word
|
607 |
+
|
608 |
+
|
609 |
+
class XlitPiston:
|
610 |
+
"""
|
611 |
+
For handling prediction & post-processing of transliteration for a single language
|
612 |
+
Class dependency: Seq2Seq, GlyphStrawboss
|
613 |
+
Global Variables: F_DIR
|
614 |
+
"""
|
615 |
+
|
616 |
+
def __init__(
|
617 |
+
self, weight_path, tglyph_cfg_file, iglyph_cfg_file="en", device="cpu"
|
618 |
+
):
|
619 |
+
|
620 |
+
self.device = device
|
621 |
+
self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
|
622 |
+
self.tgt_glyph_obj = GlyphStrawboss(glyphs=tglyph_cfg_file)
|
623 |
+
|
624 |
+
self._numsym_set = set(
|
625 |
+
json.load(open(tglyph_cfg_file, encoding="utf-8"))["numsym_map"].keys()
|
626 |
+
)
|
627 |
+
self._inchar_set = set("abcdefghijklmnopqrstuvwxyzéèá")
|
628 |
+
self._natscr_set = set().union(
|
629 |
+
self.tgt_glyph_obj.glyphs, sum(self.tgt_glyph_obj.numsym_map.values(), [])
|
630 |
+
)
|
631 |
+
|
632 |
+
## Model Config Static TODO: add defining in json support
|
633 |
+
input_dim = self.in_glyph_obj.size()
|
634 |
+
output_dim = self.tgt_glyph_obj.size()
|
635 |
+
enc_emb_dim = 300
|
636 |
+
dec_emb_dim = 300
|
637 |
+
enc_hidden_dim = 512
|
638 |
+
dec_hidden_dim = 512
|
639 |
+
rnn_type = "lstm"
|
640 |
+
enc2dec_hid = True
|
641 |
+
attention = True
|
642 |
+
enc_layers = 1
|
643 |
+
dec_layers = 2
|
644 |
+
m_dropout = 0
|
645 |
+
enc_bidirect = True
|
646 |
+
enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)
|
647 |
+
|
648 |
+
enc = Encoder(
|
649 |
+
input_dim=input_dim,
|
650 |
+
embed_dim=enc_emb_dim,
|
651 |
+
hidden_dim=enc_hidden_dim,
|
652 |
+
rnn_type=rnn_type,
|
653 |
+
layers=enc_layers,
|
654 |
+
dropout=m_dropout,
|
655 |
+
device=self.device,
|
656 |
+
bidirectional=enc_bidirect,
|
657 |
+
)
|
658 |
+
dec = Decoder(
|
659 |
+
output_dim=output_dim,
|
660 |
+
embed_dim=dec_emb_dim,
|
661 |
+
hidden_dim=dec_hidden_dim,
|
662 |
+
rnn_type=rnn_type,
|
663 |
+
layers=dec_layers,
|
664 |
+
dropout=m_dropout,
|
665 |
+
use_attention=attention,
|
666 |
+
enc_outstate_dim=enc_outstate_dim,
|
667 |
+
device=self.device,
|
668 |
+
)
|
669 |
+
self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
|
670 |
+
self.model = self.model.to(self.device)
|
671 |
+
weights = torch.load(weight_path, map_location=torch.device(self.device))
|
672 |
+
|
673 |
+
self.model.load_state_dict(weights)
|
674 |
+
self.model.eval()
|
675 |
+
|
676 |
+
def character_model(self, word, beam_width=1):
|
677 |
+
in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
|
678 |
+
## change to active or passive beam
|
679 |
+
p_out_list = self.model.active_beam_inference(in_vec, beam_width=beam_width)
|
680 |
+
result = [
|
681 |
+
self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list
|
682 |
+
]
|
683 |
+
|
684 |
+
# List type
|
685 |
+
return result
|
686 |
+
|
687 |
+
def numsym_model(self, seg):
|
688 |
+
"""tgt_glyph_obj.numsym_map[x] returns a list object"""
|
689 |
+
if len(seg) == 1:
|
690 |
+
return [seg] + self.tgt_glyph_obj.numsym_map[seg]
|
691 |
+
|
692 |
+
a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
|
693 |
+
return [seg] + ["".join(a)]
|
694 |
+
|
695 |
+
def _word_segementer(self, sequence):
|
696 |
+
|
697 |
+
sequence = sequence.lower()
|
698 |
+
accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
|
699 |
+
# sequence = ''.join([i for i in sequence if i in accepted])
|
700 |
+
|
701 |
+
segment = []
|
702 |
+
idx = 0
|
703 |
+
seq_ = list(sequence)
|
704 |
+
while len(seq_):
|
705 |
+
# for Number-Symbol
|
706 |
+
temp = ""
|
707 |
+
while len(seq_) and seq_[0] in self._numsym_set:
|
708 |
+
temp += seq_[0]
|
709 |
+
seq_.pop(0)
|
710 |
+
if temp != "":
|
711 |
+
segment.append(temp)
|
712 |
+
|
713 |
+
# for Target Chars
|
714 |
+
temp = ""
|
715 |
+
while len(seq_) and seq_[0] in self._natscr_set:
|
716 |
+
temp += seq_[0]
|
717 |
+
seq_.pop(0)
|
718 |
+
if temp != "":
|
719 |
+
segment.append(temp)
|
720 |
+
|
721 |
+
# for Input-Roman Chars
|
722 |
+
temp = ""
|
723 |
+
while len(seq_) and seq_[0] in self._inchar_set:
|
724 |
+
temp += seq_[0]
|
725 |
+
seq_.pop(0)
|
726 |
+
if temp != "":
|
727 |
+
segment.append(temp)
|
728 |
+
|
729 |
+
temp = ""
|
730 |
+
while len(seq_) and seq_[0] not in accepted:
|
731 |
+
temp += seq_[0]
|
732 |
+
seq_.pop(0)
|
733 |
+
if temp != "":
|
734 |
+
segment.append(temp)
|
735 |
+
|
736 |
+
return segment
|
737 |
+
|
738 |
+
def inferencer(self, sequence, beam_width=10):
|
739 |
+
|
740 |
+
seg = self._word_segementer(sequence[:120])
|
741 |
+
lit_seg = []
|
742 |
+
|
743 |
+
p = 0
|
744 |
+
while p < len(seg):
|
745 |
+
if seg[p][0] in self._natscr_set:
|
746 |
+
lit_seg.append([seg[p]])
|
747 |
+
p += 1
|
748 |
+
|
749 |
+
elif seg[p][0] in self._inchar_set:
|
750 |
+
lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
|
751 |
+
p += 1
|
752 |
+
|
753 |
+
elif seg[p][0] in self._numsym_set: # num & punc
|
754 |
+
lit_seg.append(self.numsym_model(seg[p]))
|
755 |
+
p += 1
|
756 |
+
else:
|
757 |
+
lit_seg.append([seg[p]])
|
758 |
+
p += 1
|
759 |
+
|
760 |
+
## IF segment less/equal to 2 then return combinotorial,
|
761 |
+
## ELSE only return top1 of each result concatenated
|
762 |
+
if len(lit_seg) == 1:
|
763 |
+
final_result = lit_seg[0]
|
764 |
+
|
765 |
+
elif len(lit_seg) == 2:
|
766 |
+
final_result = [""]
|
767 |
+
for seg in lit_seg:
|
768 |
+
new_result = []
|
769 |
+
for s in seg:
|
770 |
+
for f in final_result:
|
771 |
+
new_result.append(f + s)
|
772 |
+
final_result = new_result
|
773 |
+
|
774 |
+
else:
|
775 |
+
new_result = []
|
776 |
+
for seg in lit_seg:
|
777 |
+
new_result.append(seg[0])
|
778 |
+
final_result = ["".join(new_result)]
|
779 |
+
|
780 |
+
return final_result
|
781 |
+
|
782 |
+
|
783 |
+
class XlitEngine:
|
784 |
+
"""
|
785 |
+
For Managing the top level tasks and applications of transliteration
|
786 |
+
Global Variables: F_DIR
|
787 |
+
"""
|
788 |
+
|
789 |
+
def __init__(self, lang2use="hi", config_path="models/default_lineup.json"):
|
790 |
+
lineup = json.load(open(os.path.join(F_DIR, config_path), encoding="utf-8"))
|
791 |
+
models_path = os.path.join(F_DIR, "models")
|
792 |
+
self.lang_config = {}
|
793 |
+
if lang2use in lineup:
|
794 |
+
self.lang_config[lang2use] = lineup[lang2use]
|
795 |
+
else:
|
796 |
+
raise Exception(
|
797 |
+
"XlitError: The entered Langauge code not found. Available are {}".format(
|
798 |
+
lineup.keys()
|
799 |
+
)
|
800 |
+
)
|
801 |
+
self.langs = {}
|
802 |
+
self.lang_model = {}
|
803 |
+
for la in self.lang_config:
|
804 |
+
try:
|
805 |
+
print("Loading {}...".format(la))
|
806 |
+
self.lang_model[la] = XlitPiston(
|
807 |
+
weight_path=os.path.join(
|
808 |
+
models_path, self.lang_config[la]["weight"]
|
809 |
+
),
|
810 |
+
tglyph_cfg_file=os.path.join(
|
811 |
+
models_path, self.lang_config[la]["script"]
|
812 |
+
),
|
813 |
+
iglyph_cfg_file="en",
|
814 |
+
)
|
815 |
+
self.langs[la] = self.lang_config[la]["name"]
|
816 |
+
except Exception as error:
|
817 |
+
print("XlitError: Failure in loading {} \n".format(la), error)
|
818 |
+
print(XlitError.loading_err.value)
|
819 |
+
|
820 |
+
def translit_word(self, eng_word, lang_code="hi", topk=7, beam_width=10):
|
821 |
+
if eng_word == "":
|
822 |
+
return []
|
823 |
+
if lang_code in self.langs:
|
824 |
+
try:
|
825 |
+
res_list = self.lang_model[lang_code].inferencer(
|
826 |
+
eng_word, beam_width=beam_width
|
827 |
+
)
|
828 |
+
return res_list[:topk]
|
829 |
+
|
830 |
+
except Exception as error:
|
831 |
+
print("XlitError:", traceback.format_exc())
|
832 |
+
print(XlitError.internal_err.value)
|
833 |
+
return XlitError.internal_err
|
834 |
+
else:
|
835 |
+
print("XlitError: Unknown Langauge requested", lang_code)
|
836 |
+
print(XlitError.lang_err.value)
|
837 |
+
return XlitError.lang_err
|
838 |
+
|
839 |
+
def translit_sentence(self, eng_sentence, lang_code="hi", beam_width=10):
|
840 |
+
if eng_sentence == "":
|
841 |
+
return []
|
842 |
+
|
843 |
+
if lang_code in self.langs:
|
844 |
+
try:
|
845 |
+
out_str = ""
|
846 |
+
for word in eng_sentence.split():
|
847 |
+
res_ = self.lang_model[lang_code].inferencer(
|
848 |
+
word, beam_width=beam_width
|
849 |
+
)
|
850 |
+
out_str = out_str + res_[0] + " "
|
851 |
+
return out_str[:-1]
|
852 |
+
|
853 |
+
except Exception as error:
|
854 |
+
print("XlitError:", traceback.format_exc())
|
855 |
+
print(XlitError.internal_err.value)
|
856 |
+
return XlitError.internal_err
|
857 |
+
|
858 |
+
else:
|
859 |
+
print("XlitError: Unknown Langauge requested", lang_code)
|
860 |
+
print(XlitError.lang_err.value)
|
861 |
+
return XlitError.lang_err
|
862 |
+
|
863 |
+
|
864 |
+
if __name__ == "__main__":
|
865 |
+
|
866 |
+
engine = XlitEngine()
|
867 |
+
y = engine.translit_sentence("Hello World !")
|
868 |
+
print(y)
|