anzorq's picture
Update app.py
01b89ba
raw
history blame
4.76 kB
from diffusers import StableDiffusionPipeline
import gradio as gr
import torch
models = [
"nitrosocke/Arcane-Diffusion",
"nitrosocke/archer-diffusion",
"nitrosocke/elden-ring-diffusion",
"nitrosocke/spider-verse-diffusion",
"nitrosocke/modern-disney-diffusion",
"hakurei/waifu-diffusion",
"lambdalabs/sd-pokemon-diffusers",
"yuk/fuyuko-waifu-diffusion",
"AstraliteHeart/pony-diffusion",
"IfanSnek/JohnDiffusion",
"nousr/robo-diffusion"
]
prompt_prefixes = {
models[0]: "arcane style ",
models[1]: "archer style ",
models[2]: "elden ring style ",
models[3]: "spiderverse style ",
models[4]: "modern disney style ",
models[5]: "",
models[6]: "",
models[7]: "",
models[8]: "",
models[9]: "",
models[10]: "",
}
current_model = models[0]
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def inference(model, prompt, guidance, steps):
global current_model
global pipe
if model != current_model:
current_model = model
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
prompt = prompt_prefixes[current_model] + prompt
image = pipe(prompt, num_inference_steps=int(steps), guidance_scale=guidance, width=512, height=512).images[0]
return image
css = """
<style>
a {
text-decoration: underline;
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Finetuned Diffusion
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/IfanSnek/JohnDiffusion">John</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>.
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
model = gr.Dropdown(label="Model", choices=models, value=models[0])
prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
run = gr.Button(value="Run")
gr.Markdown(f"Running on: {device}")
with gr.Column():
image_out = gr.Image(height=512)
run.click(inference, inputs=[model, prompt, guidance, steps], outputs=image_out)
gr.Examples([
[models[0], "jason bateman disassembling the demon core", 7.5, 50],
[models[3], "portrait of dwayne johnson", 7.0, 75],
[models[4], "portrait of a beautiful alyx vance half life", 10, 50],
[models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
[models[4], "fantasy portrait painting, digital art", 4, 30],
], [prompt, guidance, steps], image_out, inference, cache_examples=torch.cuda.is_available())
gr.HTML('''
<div>
<p>Model by <a href="https://huggingface.co/nitrosocke" target="_blank">@nitrosocke</a> ❤️</p>
</div>
<div>Space by
<a href="https://twitter.com/hahahahohohe">
<img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social">
</a>
</div>
''')
demo.queue()
demo.launch()