Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,6 @@ import utils
|
|
7 |
|
8 |
is_colab = utils.is_google_colab()
|
9 |
|
10 |
-
max_width = 832
|
11 |
-
max_height = 832
|
12 |
-
|
13 |
class Model:
|
14 |
def __init__(self, name, path, prefix):
|
15 |
self.name = name
|
@@ -26,13 +23,13 @@ models = [
|
|
26 |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
|
27 |
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
28 |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
29 |
-
Model("Fuyuko Waifu", "yuk/fuyuko-waifu-diffusion", ""),
|
30 |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
31 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
32 |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
33 |
-
Model("
|
34 |
]
|
35 |
|
|
|
36 |
current_model = models[1]
|
37 |
current_model_path = current_model.path
|
38 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
@@ -63,56 +60,66 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
63 |
|
64 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
65 |
|
|
|
66 |
global pipe
|
67 |
global current_model_path
|
68 |
-
if model_path != current_model_path:
|
69 |
current_model_path = model_path
|
70 |
|
71 |
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
72 |
if torch.cuda.is_available():
|
73 |
pipe = pipe.to("cuda")
|
|
|
74 |
|
75 |
prompt = current_model.prefix + prompt
|
76 |
-
|
77 |
prompt,
|
78 |
-
negative_prompt=neg_prompt,
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
86 |
-
return image
|
87 |
|
88 |
-
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
89 |
|
|
|
90 |
global pipe
|
91 |
global current_model_path
|
92 |
-
if model_path != current_model_path:
|
93 |
current_model_path = model_path
|
94 |
|
95 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
96 |
|
97 |
if torch.cuda.is_available():
|
98 |
pipe = pipe.to("cuda")
|
|
|
99 |
|
100 |
prompt = current_model.prefix + prompt
|
101 |
-
ratio = min(
|
102 |
-
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
|
103 |
-
|
104 |
prompt,
|
105 |
-
negative_prompt=neg_prompt,
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
css = """
|
118 |
<style>
|
@@ -138,6 +145,13 @@ css = """
|
|
138 |
.finetuned-diffusion-div p a {
|
139 |
text-decoration: underline;
|
140 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
</style>
|
142 |
"""
|
143 |
with gr.Blocks(css=css) as demo:
|
@@ -151,7 +165,7 @@ with gr.Blocks(css=css) as demo:
|
|
151 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
152 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
153 |
</p>
|
154 |
-
<p>Don't want to wait in queue?
|
155 |
Running on <b>{device}</b>
|
156 |
</p>
|
157 |
</div>
|
@@ -159,42 +173,58 @@ with gr.Blocks(css=css) as demo:
|
|
159 |
)
|
160 |
with gr.Row():
|
161 |
|
162 |
-
with gr.
|
163 |
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
164 |
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", visible=False, interactive=True)
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2, step=1)
|
172 |
-
width = gr.Slider(label="Width", value=512, maximum=max_width, minimum=64, step=8)
|
173 |
-
height = gr.Slider(label="Height", value=512, maximum=max_height, minimum=64, step=8)
|
174 |
-
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
175 |
-
|
176 |
-
with gr.Tab("Image to image"):
|
177 |
-
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
178 |
-
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
179 |
-
|
180 |
-
with gr.Column():
|
181 |
image_out = gr.Image(height=512)
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_path)
|
185 |
-
custom_model_path.change(custom_model_changed, inputs=custom_model_path
|
|
|
|
|
186 |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
187 |
-
prompt.submit(inference, inputs=inputs, outputs=image_out
|
188 |
-
|
189 |
-
|
190 |
-
gr.Examples([
|
191 |
[models[1].name, "jason bateman disassembling the demon core", 7.5, 50],
|
192 |
[models[4].name, "portrait of dwayne johnson", 7.0, 75],
|
193 |
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 50],
|
194 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
|
195 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 30],
|
196 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available())
|
197 |
-
|
|
|
198 |
gr.Markdown('''
|
199 |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
|
200 |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
|
|
|
7 |
|
8 |
is_colab = utils.is_google_colab()
|
9 |
|
|
|
|
|
|
|
10 |
class Model:
|
11 |
def __init__(self, name, path, prefix):
|
12 |
self.name = name
|
|
|
23 |
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
|
24 |
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
25 |
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
|
|
26 |
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
27 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
28 |
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
29 |
+
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy")
|
30 |
]
|
31 |
|
32 |
+
last_mode = "txt2img"
|
33 |
current_model = models[1]
|
34 |
current_model_path = current_model.path
|
35 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
|
|
60 |
|
61 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
62 |
|
63 |
+
global last_mode
|
64 |
global pipe
|
65 |
global current_model_path
|
66 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
67 |
current_model_path = model_path
|
68 |
|
69 |
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
70 |
if torch.cuda.is_available():
|
71 |
pipe = pipe.to("cuda")
|
72 |
+
last_mode = "txt2img"
|
73 |
|
74 |
prompt = current_model.prefix + prompt
|
75 |
+
result = pipe(
|
76 |
prompt,
|
77 |
+
negative_prompt = neg_prompt,
|
78 |
+
# num_images_per_prompt=n_images,
|
79 |
+
num_inference_steps = int(steps),
|
80 |
+
guidance_scale = guidance,
|
81 |
+
width = width,
|
82 |
+
height = height,
|
83 |
+
generator = generator)
|
84 |
|
85 |
+
return replace_nsfw_images(result)
|
|
|
86 |
|
87 |
+
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
88 |
|
89 |
+
global last_mode
|
90 |
global pipe
|
91 |
global current_model_path
|
92 |
+
if model_path != current_model_path or last_mode != "img2img":
|
93 |
current_model_path = model_path
|
94 |
|
95 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
96 |
|
97 |
if torch.cuda.is_available():
|
98 |
pipe = pipe.to("cuda")
|
99 |
+
last_mode = "img2img"
|
100 |
|
101 |
prompt = current_model.prefix + prompt
|
102 |
+
ratio = min(height / img.height, width / img.width)
|
103 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
104 |
+
result = pipe(
|
105 |
prompt,
|
106 |
+
negative_prompt = neg_prompt,
|
107 |
+
# num_images_per_prompt=n_images,
|
108 |
+
init_image = img,
|
109 |
+
num_inference_steps = int(steps),
|
110 |
+
strength = strength,
|
111 |
+
guidance_scale = guidance,
|
112 |
+
width = width,
|
113 |
+
height = height,
|
114 |
+
generator = generator)
|
115 |
|
116 |
+
return replace_nsfw_images(result)
|
117 |
+
|
118 |
+
def replace_nsfw_images(results):
|
119 |
+
for i in range(len(results.images)):
|
120 |
+
if results.nsfw_content_detected[i]:
|
121 |
+
results.images[i] = Image.open("nsfw.png")
|
122 |
+
return results.images[0]
|
123 |
|
124 |
css = """
|
125 |
<style>
|
|
|
145 |
.finetuned-diffusion-div p a {
|
146 |
text-decoration: underline;
|
147 |
}
|
148 |
+
.tabs {
|
149 |
+
margin-top: 0px;
|
150 |
+
margin-bottom: 0px;
|
151 |
+
}
|
152 |
+
#gallery {
|
153 |
+
min-height: 20rem;
|
154 |
+
}
|
155 |
</style>
|
156 |
"""
|
157 |
with gr.Blocks(css=css) as demo:
|
|
|
165 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
166 |
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
167 |
</p>
|
168 |
+
<p>Don't want to wait in queue? <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
169 |
Running on <b>{device}</b>
|
170 |
</p>
|
171 |
</div>
|
|
|
173 |
)
|
174 |
with gr.Row():
|
175 |
|
176 |
+
with gr.Group():
|
177 |
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
178 |
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", visible=False, interactive=True)
|
179 |
+
|
180 |
+
with gr.Row():
|
181 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
182 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
183 |
+
|
184 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
image_out = gr.Image(height=512)
|
186 |
+
# gallery = gr.Gallery(
|
187 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
188 |
+
# ).style(grid=[1], height="auto")
|
189 |
+
|
190 |
+
with gr.Tab("Options"):
|
191 |
+
with gr.Group():
|
192 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
193 |
+
|
194 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
198 |
+
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=100, step=1)
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
202 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
203 |
+
|
204 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
205 |
+
|
206 |
+
with gr.Tab("Image to image"):
|
207 |
+
with gr.Group():
|
208 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
209 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
210 |
|
211 |
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_path)
|
212 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path)
|
213 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
214 |
+
|
215 |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
216 |
+
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
217 |
+
generate.click(inference, inputs=inputs, outputs=image_out)
|
218 |
+
|
219 |
+
ex = gr.Examples([
|
220 |
[models[1].name, "jason bateman disassembling the demon core", 7.5, 50],
|
221 |
[models[4].name, "portrait of dwayne johnson", 7.0, 75],
|
222 |
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 50],
|
223 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
|
224 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 30],
|
225 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available())
|
226 |
+
# ex.dataset.headers = [""]
|
227 |
+
|
228 |
gr.Markdown('''
|
229 |
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
|
230 |
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
|