from diffusers import StableDiffusionPipeline import gradio as gr import torch models = [ "nitrosocke/Arcane-Diffusion", "nitrosocke/archer-diffusion", "nitrosocke/elden-ring-diffusion", "nitrosocke/spider-verse-diffusion", "nitrosocke/modern-disney-diffusion", "hakurei/waifu-diffusion", "lambdalabs/sd-pokemon-diffusers", "yuk/fuyuko-waifu-diffusion", "AstraliteHeart/pony-diffusion", "IfanSnek/JohnDiffusion", "nousr/robo-diffusion" ] prompt_prefixes = { models[0]: "arcane style ", models[1]: "archer style ", models[2]: "elden ring style ", models[3]: "spiderverse style ", models[4]: "modern disney style ", models[5]: "", models[6]: "", models[7]: "", models[8]: "", models[9]: "", models[10]: "", } current_model = models[0] pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16) if torch.cuda.is_available(): pipe = pipe.to("cuda") device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def on_model_change(model): global current_model global pipe if model != current_model: current_model = model pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16) if torch.cuda.is_available(): pipe = pipe.to("cuda") def inference(prompt, guidance, steps): prompt = prompt_prefixes[current_model] + prompt image = pipe(prompt, num_inference_steps=int(steps), guidance_scale=guidance, width=512, height=512).images[0] return image with gr.Blocks() as demo: gr.HTML( """
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: Arcane, Archer, Elden Ring, Spiderverse, Modern Disney, Waifu, Pokemon, Fuyuko Waifu, Pony, John, Robo.
Model by @nitrosocke ❤️