Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image | |
import torch | |
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config | |
from point_e.diffusion.sampler import PointCloudSampler | |
from point_e.models.download import load_checkpoint | |
from point_e.models.configs import MODEL_CONFIGS, model_from_config | |
from point_e.util.plotting import plot_point_cloud | |
from point_e.util.pc_to_mesh import marching_cubes_mesh | |
import skimage.measure | |
from pyntcloud import PyntCloud | |
import matplotlib.colors | |
import plotly.graph_objs as go | |
import trimesh | |
import gradio as gr | |
state = "" | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def set_state(s): | |
print(s) | |
global state | |
state = s | |
def get_state(): | |
return state | |
set_state('Creating txt2mesh model...') | |
t2m_name = 'base40M-textvec' | |
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device) | |
t2m_model.eval() | |
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name]) | |
set_state('Downloading txt2mesh checkpoint...') | |
t2m_model.load_state_dict(load_checkpoint(t2m_name, device)) | |
def load_img2mesh_model(model_name): | |
set_state(f'Creating img2mesh model {model_name}...') | |
i2m_name = model_name | |
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device) | |
i2m_model.eval() | |
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name]) | |
set_state(f'Downloading img2mesh checkpoint {model_name}...') | |
i2m_model.load_state_dict(load_checkpoint(i2m_name, device)) | |
return i2m_model, base_diffusion_i2m | |
img2mesh_model_name = 'base40M' #'base300M' #'base1B' | |
i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name) | |
set_state('Creating upsample model...') | |
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) | |
upsampler_model.eval() | |
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) | |
set_state('Downloading upsampler checkpoint...') | |
upsampler_model.load_state_dict(load_checkpoint('upsample', device)) | |
set_state('Creating SDF model...') | |
sdf_name = 'sdf' | |
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device) | |
sdf_model.eval() | |
set_state('Loading SDF model...') | |
sdf_model.load_state_dict(load_checkpoint(sdf_name, device)) | |
set_state('') | |
def get_sampler(model_name, txt2obj, guidance_scale): | |
global img2mesh_model_name | |
global base_diffusion_i2m | |
global i2m_model | |
if model_name != img2mesh_model_name: | |
img2mesh_model_name = model_name | |
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name) | |
return PointCloudSampler( | |
device=device, | |
models=[t2m_model if txt2obj else i2m_model, upsampler_model], | |
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion], | |
num_points=[1024, 4096 - 1024], | |
aux_channels=['R', 'G', 'B'], | |
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale], | |
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",) | |
) | |
def generate_txt2img(prompt): | |
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5") | |
prompt = f"“a 3d rendering of {prompt}, chair imitating an avocado, full view, white background" | |
gallery_dir = stable_diffusion(prompt, fn_index=2)[0] | |
imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)] | |
return imgs[1], gr.update(visible=True) | |
def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32): | |
set_state('Entered generate function...') | |
if isinstance(input, Image.Image): | |
input = prepare_img(input) | |
# if input is a string, it's a text prompt | |
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale) | |
# Produce a sample from the model. | |
set_state('Sampling...') | |
samples = None | |
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input]) | |
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args): | |
samples = x | |
set_state('Converting to point cloud...') | |
pc = sampler.output_to_point_clouds(samples)[0] | |
set_state('Converting to mesh...') | |
save_ply(pc, 'point_cloud.ply', grid_size) | |
set_state('') | |
return pc_to_plot(pc), ply_to_obj('point_cloud.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'point_cloud.ply'], visible=True) | |
def prepare_img(img): | |
w, h = img.size | |
if w > h: | |
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h) | |
else: | |
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2)) | |
# resize to 256x256 | |
img = img.resize((256, 256)) | |
return img | |
def pc_to_plot(pc): | |
return go.Figure( | |
data=[ | |
go.Scatter3d( | |
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], | |
mode='markers', | |
marker=dict( | |
size=2, | |
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], | |
) | |
) | |
], | |
layout=dict( | |
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)) | |
), | |
) | |
def ply_to_obj(ply_file, obj_file): | |
mesh = trimesh.load(ply_file) | |
mesh.export(obj_file) | |
return obj_file | |
def save_ply(pc, file_name, grid_size): | |
# Produce a mesh (with vertex colors) | |
mesh = marching_cubes_mesh( | |
pc=pc, | |
model=sdf_model, | |
batch_size=4096, | |
grid_size=grid_size, # increase to 128 for resolution used in evals | |
progress=True, | |
) | |
# Write the mesh to a PLY file to import into some other program. | |
with open(file_name, 'wb') as f: | |
mesh.write_ply(f) | |
with gr.Blocks() as app: | |
gr.Markdown("## Point-E text-to-3D Demo") | |
gr.Markdown("This is a demo for [Point-E: A System for Generating 3D Point Clouds from Complex Prompts](https://arxiv.org/abs/2212.08751) by OpenAI. Check out the [GitHub repo](https://github.com/openai/point-e) for more information.") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Text to 3D"): | |
prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot") | |
btn_generate_txt2obj = gr.Button(value="Generate") | |
with gr.Tab("Image to 3D"): | |
img = gr.Image(label="Image") | |
gr.Markdown("Best results with images of 3D objects with no shadows on a white background.") | |
btn_generate_img2obj = gr.Button(value="Generate") | |
with gr.Tab("Text to Image to 3D"): | |
gr.Markdown("Generate an image with Stable Diffusion, then convert to 3D. Just enter the object you want to generate.") | |
prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background") | |
btn_generate_txt2sd = gr.Button(value="Generate") | |
img_sd = gr.Image(label="Image") | |
btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False) | |
with gr.Accordion("Advanced settings", open=False): | |
dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"]) | |
guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1) | |
grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16) | |
with gr.Column(): | |
plot = gr.Plot(label="Point cloud") | |
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False) | |
model_3d = gr.Model3D(value=None) | |
file_out = gr.File(label="Obj file", visible=False) | |
# state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False) | |
# inputs = [dropdown_models, prompt, img, guidance_scale, grid_size] | |
outputs = [plot, model_3d, file_out] | |
prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs) | |
btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs) | |
btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) | |
prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj]) | |
btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj]) | |
btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) | |
# btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out]) | |
gr.HTML(""" | |
<br><br> | |
<div style="border-top: 1px solid #303030;"> | |
<br> | |
<p>Space by:<br> | |
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br> | |
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br> | |
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 30px !important;width: 102px !important;" ></a><br><br> | |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.point-e_demo" alt="visitors"></p> | |
</div> | |
""") | |
gr.Examples( | |
examples=[ | |
["a cactus in a pot"], | |
["a round table with floral tablecloth"], | |
["a red kettle"], | |
["a vase with flowers"], | |
["a sports car"], | |
["a man"], | |
], | |
inputs=[prompt], | |
outputs=outputs, | |
fn=generate_3D, | |
cache_examples=False | |
) | |
gr.Examples( | |
examples=[ | |
["images/corgi.png"], | |
["images/cube_stack.jpg"], | |
["images/chair.png"], | |
], | |
inputs=[img], | |
outputs=outputs, | |
fn=generate_3D, | |
cache_examples=False | |
) | |
# app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False) | |
app.queue() | |
# app.launch(debug=True, share=True, height=768) | |
app.launch(debug=True) | |