Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
src_lang="ru" | |
tgt_lang="zu" | |
tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
def translate(text, num_beams=4, num_return_sequences=4): | |
inputs = tokenizer(text, return_tensors="pt") | |
translated_tokens = model.generate( | |
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences | |
) | |
translations = [] | |
for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True): | |
translations.append(translation) | |
return "\n".join(["• " + translation for translation in translations]) | |
output = gr.outputs.Textbox() | |
with gr.Accordion("Advanced Options"): | |
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4) | |
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sequences", default=4) | |
iface = gr.Interface(fn=translate, inputs=["text", num_beams, num_return_sequences], outputs=output) | |
iface.launch() | |
# import gradio as gr | |
# title = "Русско-черкесский переводчик" | |
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below." | |
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>""" | |
# examples = [ | |
# ["Мы идем домой"], | |
# ["Сегодня хорошая погода"], | |
# ["Дети играют во дворе"], | |
# ["We live in a big house"], | |
# ["Tu es une bonne personne."], | |
# ["أين تعيش؟"], | |
# ["Bir şeyler yapmak istiyorum."], | |
# ] | |
# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |