Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
############### VANILLA INFERENCE ############### | |
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
# src_lang="ru" | |
# tgt_lang="zu" | |
# # tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang) | |
# tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_safetensors=True)#, load_in_4bit=True, device_map="auto") | |
# model.to_bettertransformer() | |
# def translate(text, num_beams=4, num_return_sequences=4): | |
# inputs = tokenizer(text, return_tensors="pt") | |
# num_return_sequences = min(num_return_sequences, num_beams) | |
# translated_tokens = model.generate( | |
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences | |
# ) | |
# translations = [] | |
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True): | |
# translations.append(translation) | |
# # result = {"input":text, "translations":translations} | |
# return text, translations | |
############### IPEX OPTIMIZED INFERENCE ############### | |
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# from optimum.bettertransformer import BetterTransformer | |
# import intel_extension_for_pytorch as ipex | |
# from transformers.modeling_outputs import BaseModelOutput | |
# import torch | |
# model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
# src_lang = "ru" | |
# tgt_lang = "zu" | |
# tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
# # flash attention optimization | |
# model = BetterTransformer.transform(model, keep_original_model=False) | |
# # ipex optimization | |
# model.eval() | |
# model = ipex.optimize(model, dtype=torch.float, level="O1", conv_bn_folding=False, inplace=True) | |
# # Get the encoder | |
# encoder = model.get_encoder() | |
# # Prepare an example input for the encoder | |
# example_input_text = "Example text in Russian" | |
# inputs_example = tokenizer(example_input_text, return_tensors="pt") | |
# # Trace just the encoder with strict=False | |
# scripted_encoder = torch.jit.trace(encoder, inputs_example['input_ids'], strict=False) | |
# def translate(text, num_beams=4, num_return_sequences=4): | |
# inputs = tokenizer(text, return_tensors="pt") | |
# num_return_sequences = min(num_return_sequences, num_beams) | |
# # Use the scripted encoder for the first step of inference | |
# encoder_output_dict = scripted_encoder(inputs['input_ids']) | |
# encoder_outputs = BaseModelOutput(last_hidden_state=encoder_output_dict['last_hidden_state']) | |
# # Use the original, untraced model for the second step, passing the encoder's outputs as inputs | |
# translated_tokens = model.generate( | |
# encoder_outputs=encoder_outputs, | |
# forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], | |
# num_beams=num_beams, | |
# num_return_sequences=num_return_sequences | |
# ) | |
# translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens] | |
# return text, translations | |
# ############### ONNX MODEL INFERENCE ############### | |
# from transformers import AutoTokenizer, pipeline | |
# from optimum.onnxruntime import ORTModelForSeq2SeqLM | |
# model_id = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
# model = ORTModelForSeq2SeqLM.from_pretrained(model_id, subfolder="onnx", file_name="encoder_model_optimized.onnx") | |
# tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# def translate(text, num_beams=4, num_return_sequences=4): | |
# inputs = tokenizer(text, return_tensors="pt") | |
# num_return_sequences = min(num_return_sequences, num_beams) | |
# translated_tokens = model.generate( | |
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zu"], num_beams=num_beams, num_return_sequences=num_return_sequences | |
# ) | |
# translations = [] | |
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True): | |
# translations.append(translation) | |
# return text, translations | |
############### CTRANSLATE2 INFERENCE ############### | |
import ctranslate2 | |
import transformers | |
translator = ctranslate2.Translator("ctranslate2") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K") | |
def translate(text, num_beams=4, num_return_sequences=4): | |
num_return_sequences = min(num_return_sequences, num_beams) | |
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text)) | |
target_prefix = [tokenizer.lang_code_to_token["zu"]] | |
results = translator.translate_batch( | |
[source], | |
target_prefix=[target_prefix], | |
beam_size=num_beams, | |
num_hypotheses=num_return_sequences | |
) | |
translations = [] | |
for hypothesis in results[0].hypotheses: | |
target = hypothesis[1:] | |
decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target)) | |
translations.append(decoded_sentence) | |
return text, translations | |
output = gr.Textbox() | |
# with gr.Accordion("Advanced Options"): | |
num_beams = gr.Slider(2, 10, step=1, label="Number of beams", value=4) | |
num_return_sequences = gr.Slider(2, 10, step=1, label="Number of returned sentences", value=4) | |
title = "Russian-Circassian translator demo" | |
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>" | |
# examples = [ | |
# ["Мы идем домой"], | |
# ["Сегодня хорошая погода"], | |
# ["Дети играют во дворе"], | |
# ["We live in a big house"], | |
# ["Tu es une bonne personne."], | |
# ["أين تعيش؟"], | |
# ["Bir şeyler yapmak istiyorum."], | |
# ["– Если я его отпущу, то ты вовек не сможешь его поймать, – заявил Сосруко."], | |
# ["Как только старик ушел, Сатаней пошла к Саусырыко."], | |
# ["我永远不会放弃你。"], | |
# ["우리는 소치에 살고 있습니다."], | |
# ] | |
gr.Interface( | |
fn=translate, | |
inputs=["text", num_beams, num_return_sequences], | |
outputs=["text", output], | |
title=title, | |
# examples=examples, | |
article=article).launch() | |
# import gradio as gr | |
# title = "Русско-черкесский переводчик" | |
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below." | |
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>""" | |
# examples = [ | |
# ["Мы идем домой"], | |
# ["Сегодня хорошая погода"], | |
# ["Дети играют во дворе"], | |
# ["We live in a big house"], | |
# ["Tu es une bonne personne."], | |
# ["أين تعيش؟"], | |
# ["Bir şeyler yapmak istiyorum."], | |
# ] | |
# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |