Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,61 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
import fasttext
|
5 |
|
6 |
-
|
7 |
-
# model_path = 'lid.323.ftz'
|
8 |
-
# language_model = fasttext.load_model(model_path)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
tgt_lang="zu"
|
13 |
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
15 |
-
|
|
|
16 |
|
17 |
def translate(text, num_beams=4, num_return_sequences=4):
|
18 |
-
|
19 |
-
languages, _ = lid_model.predict(text, k=1)
|
20 |
-
detected_language = languages[0].replace("__label__", "")
|
21 |
-
|
22 |
-
inputs = tokenizer(text, return_tensors="pt")
|
23 |
-
num_return_sequences = min(num_return_sequences, num_beams)
|
24 |
-
translated_tokens = model.generate(
|
25 |
-
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
|
26 |
-
)
|
27 |
-
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
|
28 |
-
|
29 |
-
return detected_language, text, translations
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4)
|
35 |
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sentences", default=4)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
gr.Interface(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
# import gradio as gr
|
46 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
4 |
|
5 |
+
model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
|
6 |
+
src_lang="ru"
|
7 |
tgt_lang="zu"
|
8 |
|
9 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_safetensors=True)#, load_in_4bit=True, device_map="auto")
|
12 |
|
13 |
def translate(text, num_beams=4, num_return_sequences=4):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
num_return_sequences = min(num_return_sequences, num_beams)
|
17 |
+
|
18 |
+
translated_tokens = model.generate(
|
19 |
+
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
|
20 |
+
)
|
21 |
+
|
22 |
+
translations = []
|
23 |
+
for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
|
24 |
+
translations.append(translation)
|
25 |
|
26 |
+
# result = {"input":text, "translations":translations}
|
27 |
+
return text, translations
|
28 |
+
|
29 |
+
output = gr.Textbox()
|
30 |
+
# with gr.Accordion("Advanced Options"):
|
31 |
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4)
|
32 |
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sentences", default=4)
|
33 |
|
34 |
+
|
35 |
+
title = "Russian-Circassian translator demo"
|
36 |
+
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>"
|
37 |
+
|
38 |
+
examples = [
|
39 |
+
["Мы идем домой"],
|
40 |
+
["Сегодня хорошая погода"],
|
41 |
+
["Дети играют во дворе"],
|
42 |
+
["We live in a big house"],
|
43 |
+
["Tu es une bonne personne."],
|
44 |
+
["أين تعيش؟"],
|
45 |
+
["Bir şeyler yapmak istiyorum."],
|
46 |
+
["– Если я его отпущу, то ты вовек не сможешь его поймать, – заявил Сосруко."],
|
47 |
+
["Как только старик ушел, Сатаней пошла к Саусырыко."],
|
48 |
+
["我永远不会放弃你。"],
|
49 |
+
["우리는 소치에 살고 있습니다."],
|
50 |
+
]
|
51 |
+
|
52 |
gr.Interface(
|
53 |
+
fn=translate,
|
54 |
+
inputs=["text", num_beams, num_return_sequences],
|
55 |
+
outputs=["text", output],
|
56 |
+
title=title,
|
57 |
+
# examples=examples,
|
58 |
+
article=article).launch()
|
59 |
|
60 |
# import gradio as gr
|
61 |
|