import os import torch from transformers import AutoTokenizer, AutoModelForMaskedLM import config from logger import logger from utils.download import download_and_verify from config import DEVICE as device URLS = [ "https://huggingface.co/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin", ] TARGET_PATH = os.path.join(config.ABS_PATH, "bert_vits2/bert/bert-base-japanese-v3/pytorch_model.bin") EXPECTED_MD5 = None if not os.path.exists(TARGET_PATH): success, message = download_and_verify(URLS, TARGET_PATH, EXPECTED_MD5) try: logger.info("Loading bert-base-japanese-v3...") tokenizer = AutoTokenizer.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/bert-base-japanese-v3") model = AutoModelForMaskedLM.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/bert-base-japanese-v3").to( device) logger.info("Loading finished.") except Exception as e: logger.error(e) logger.error(f"Please download pytorch_model.bin from cl-tohoku/bert-base-japanese-v3.") def get_bert_feature(text, word2ph, device=config.DEVICE): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() assert inputs["input_ids"].shape[-1] == len(word2ph) word2phone = word2ph phone_level_feature = [] for i in range(len(word2phone)): repeat_feature = res[i].repeat(word2phone[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T