File size: 32,663 Bytes
149fab1 1008b2a 149fab1 fb3482f 85aaa6e 149fab1 337c189 149fab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
<!DOCTYPE html>
<html>
<head>
<title>Carbono UI</title>
<style>
a {
color: white;
}
body {
background: #000;
color: #fff;
font-family: monospace;
margin: 0;
padding-top: 16px;
padding: 5%;
display: flex;
flex-direction: column;
gap: 15px;
overflow-x: hidden;
}
h3 {
margin: 1.5rem;
margin-bottom: 0;
}
p {
margin: 1.5rem;
margin-top: 0rem;
color: #777;
}
.grid {
display: grid;
grid-template-columns: minmax(400px, 1fr) minmax(300px, 2fr);
gap: 15px;
opacity: 0;
transform: translateY(20px);
animation: fadeInUp 0.5s ease-out forwards;
}
.widget {
background: #000;
border-radius: 10px;
padding: 15px;
box-sizing: border-box;
width: 100%;
opacity: 0;
transform: translateY(20px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.2s;
}
.widget-title {
font-size: 1.1em;
margin-bottom: 12px;
border-bottom: 1px solid #333;
padding-bottom: 8px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.3s;
}
.input-group {
margin-bottom: 12px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.4s;
}
.settings-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 10px;
margin-bottom: 12px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.5s;
}
input[type="text"],
input[type="number"],
select,
textarea {
outline: none;
width: 100%;
padding: 6px;
background: #222;
border: 1px solid #444;
color: #fff;
border-radius: 8px;
margin-top: 4px;
box-sizing: border-box;
transition: background 0.3s, border 0.3s;
}
span {
background-color: white;
color: black;
font-weight: 600;
font-size: 12px;
padding: 1px;
border-radius: 3px;
cursor: pointer;
}
input[type="text"]:focus,
input[type="number"]:focus,
select:focus,
textarea:focus {
background: #333;
border: 1px solid #666;
}
button {
background: #fff;
color: #000;
border: none;
padding: 6px 12px;
border-radius: 6px;
cursor: pointer;
transition: all 0.1s ease;
border: 1px solid white;
opacity: 0;
height: 28px;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.6s;
}
button:hover {
border: 1px solid white;
color: white;
background: #000;
}
.progress-container {
height: 180px;
position: relative;
border: 1px solid #333;
border-radius: 8px;
margin-bottom: 10px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.7s;
}
.loss-graph {
position: absolute;
bottom: 0;
width: 100%;
height: 100%;
}
.network-graph {
position: absolute;
bottom: 0;
width: 100%;
height: 100%;
}
.flex-container {
display: flex;
gap: 20px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.8s;
}
.prediction-section,
.model-section {
flex: 1;
}
.button-group {
display: flex;
gap: 10px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 0.9s;
}
.visualization-container {
margin-top: 15px;
opacity: 0;
transform: translateY(10px);
animation: fadeInUp 0.5s ease-out forwards;
animation-delay: 1s;
}
.epoch-progress {
height: 5px;
background: #222;
border-radius: 8px;
overflow: hidden;
}
.epoch-bar {
height: 100%;
width: 0;
background: #fff;
transition: width 0.3s ease;
}
@keyframes fadeInUp {
to {
opacity: 1;
transform: translateY(0);
}
}
/* Responsive Design */
@media (max-width: 768px) {
.grid {
grid-template-columns: 1fr;
}
.flex-container {
flex-direction: column;
}
}
</style>
</head>
<body>
<h3>playground</h3>
<p>this is a web app for showcasing carbono, a self-contained micro-library that makes it super easy to play, create and share small neural networks; it's the easiest, hackable machine learning js library; it's also convenient to quickly prototype on embedded devices. to download it and know more you can go to the <a href="https://github.com/appvoid/carbono" target="_blank">github repo</a>; you can see additional training details by opening the console; to load a dummy dataset, <span id="loadDataBtn">click here</span> and then click "train" button.</p>
<div class="grid">
<!-- Group 1: Data & Training -->
<div class="widget">
<div class="widget-title">model settings</div>
<div class="input-group">
<label>training set:</label>
<textarea id="trainingData" rows="3" placeholder="1,1,1,0
1,0,1,0
0,1,0,1"></textarea>
</div>
<p>last number represents actual desired output</p>
<div class="input-group">
<label>validation set:</label>
<textarea id="testData" rows="3" placeholder="0,0,0,1"></textarea>
</div>
<div class="settings-grid">
<div class="input-group">
<label>epochs:</label>
<input type="number" id="epochs" value="50">
</div>
<div class="input-group">
<label>learning rate:</label>
<input type="number" id="learningRate" value="0.1" step="0.001">
</div>
<div class="input-group">
<label>batch size:</label>
<input type="number" id="batchSize" value="8">
</div>
<div class="input-group">
<label>hidden layers:</label>
<input type="number" id="numHiddenLayers" value="1">
</div>
</div>
<!-- New UI Elements for Layer Configuration -->
<div id="hiddenLayersConfig"></div>
</div>
<!-- Group 2: Progress & Visualization -->
<div class="widget">
<div class="widget-title">training progress</div>
<div id="progress">
<div class="progress-container">
<canvas id="lossGraph" class="loss-graph"></canvas>
</div>
<p>training loss is white, validation loss is gray</p>
<div class="epoch-progress">
<div id="epochBar" class="epoch-bar"></div>
</div>
<div id="stats" style="margin-top: 10px;"></div>
</div>
<div class="model-section">
<br>
<div class="widget-title">model management</div>
<p>save the weights to load them on your app or share them on huggingface!</p>
<div class="button-group">
<button id="trainButton">train</button>
<button id="saveButton">save</button>
<button id="loadButton">load</button>
<div class="prediction-section">
<div class="widget-title">prediction</div>
<p>predict output</p>
<div class="input-group">
<label>input:</label>
<input type="text" id="predictionInput" placeholder="0.4, 0.2, 0.6">
</div>
<button id="predictButton">predict</button>
<div id="predictionResult" style="margin-top: 10px;"></div>
</div>
<div class="visualization-container">
<div class="widget-title">visualization</div>
<div class="progress-container">
<canvas id="networkGraph" class="network-graph"></canvas>
</div>
<p>internal model's representation</p>
</div>
</div>
</div>
</div>
</div>
<script>
// 🧠 carbono: A Fun and Friendly Neural Network Class 🧠
// This micro-library wraps everything you need to have
// This is the simplest yet functional feedforward mlp in js
class carbono {
constructor(debug = true) {
this.layers = []; // 📚 Stores info about each layer
this.weights = []; // ⚖️ Stores weights for each layer
this.biases = []; // 🔧 Stores biases for each layer
this.activations = []; // 🚀 Stores activation functions for each layer
this.details = {}; // 📊 Stores details about the model
this.debug = debug; // 🐛 Enables or disables debug messages
}
// 🏗️ Add a new layer to the neural network
layer(inputSize, outputSize, activation = 'tanh') {
// 🧱 Store layer information
this.layers.push({
inputSize,
outputSize,
activation
});
// 🔍 Check if the new layer's input size matches the previous layer's output size
if (this.weights.length > 0) {
const lastLayerOutputSize = this.layers[this.layers.length - 2].outputSize;
if (inputSize !== lastLayerOutputSize) {
throw new Error('Oops! The input size of the new layer must match the output size of the previous layer.');
}
}
// 🎲 Initialize weights using Xavier/Glorot initialization
const weights = [];
for (let i = 0; i < outputSize; i++) {
const row = [];
for (let j = 0; j < inputSize; j++) {
row.push((Math.random() - 0.5) * 2 * Math.sqrt(6 / (inputSize + outputSize)));
}
weights.push(row);
}
this.weights.push(weights);
// 🎚️ Initialize biases with small positive values
const biases = Array(outputSize).fill(0.01);
this.biases.push(biases);
// 🚀 Store the activation function for this layer
this.activations.push(activation);
}
// 🧮 Apply the activation function
activationFunction(x, activation) {
switch (activation) {
case 'tanh':
return Math.tanh(x); // 〰️ Hyperbolic tangent
case 'sigmoid':
return 1 / (1 + Math.exp(-x)); // 📈 S-shaped curve
case 'relu':
return Math.max(0, x); // 📐 Rectified Linear Unit
case 'selu':
const alpha = 1.67326;
const scale = 1.0507;
return x > 0 ? scale * x : scale * alpha * (Math.exp(x) - 1); // 🚀 Scaled Exponential Linear Unit
default:
throw new Error('Whoops! We don\'t know that activation function.');
}
}
// 📐 Calculate the derivative of the activation function
activationDerivative(x, activation) {
switch (activation) {
case 'tanh':
return 1 - Math.pow(Math.tanh(x), 2);
case 'sigmoid':
const sigmoid = 1 / (1 + Math.exp(-x));
return sigmoid * (1 - sigmoid);
case 'relu':
return x > 0 ? 1 : 0;
case 'selu':
const alpha = 1.67326;
const scale = 1.0507;
return x > 0 ? scale : scale * alpha * Math.exp(x);
default:
throw new Error('Oops! We don\'t know the derivative of that activation function.');
}
}
// 🏋️♀️ Train the neural network
async train(trainSet, options = {}) {
// 🎛️ Set up training options with default values
const {
epochs = 200, // 🔄 Number of times to go through the entire dataset
learningRate = 0.212, // 📏 How big of steps to take when adjusting weights
batchSize = 16, // 📦 Number of samples to process before updating weights
printEveryEpochs = 100, // 🖨️ How often to print progress
earlyStopThreshold = 1e-6, // 🛑 When to stop if the error is small enough
testSet = null, // 🧪 Optional test set for evaluation
callback = null // 📡 Callback function for real-time updates
} = options;
const start = Date.now(); // ⏱️ Start the timer
// 🛡️ Make sure batch size is at least 2
if (batchSize < 1) batchSize = 2;
// 🏗️ Automatically create layers if none exist
if (this.layers.length === 0) {
const numInputs = trainSet[0].input.length;
this.layer(numInputs, numInputs, 'tanh');
this.layer(numInputs, 1, 'tanh');
}
let lastTrainLoss = 0;
let lastTestLoss = null;
// 🔄 Main training loop
for (let epoch = 0; epoch < epochs; epoch++) {
let trainError = 0;
// 📦 Process data in batches
for (let b = 0; b < trainSet.length; b += batchSize) {
const batch = trainSet.slice(b, b + batchSize);
let batchError = 0;
// 🧠 Forward pass and backward pass for each item in the batch
for (const data of batch) {
// 🏃♂️ Forward pass
const layerInputs = [data.input];
for (let i = 0; i < this.weights.length; i++) {
const inputs = layerInputs[i];
const weights = this.weights[i];
const biases = this.biases[i];
const activation = this.activations[i];
const outputs = [];
for (let j = 0; j < weights.length; j++) {
const weight = weights[j];
let sum = biases[j];
for (let k = 0; k < inputs.length; k++) {
sum += inputs[k] * weight[k];
}
outputs.push(this.activationFunction(sum, activation));
}
layerInputs.push(outputs);
}
// 🔙 Backward pass
const outputLayerIndex = this.weights.length - 1;
const outputLayerInputs = layerInputs[layerInputs.length - 1];
const outputErrors = [];
for (let i = 0; i < outputLayerInputs.length; i++) {
const error = data.output[i] - outputLayerInputs[i];
outputErrors.push(error);
}
let layerErrors = [outputErrors];
for (let i = this.weights.length - 2; i >= 0; i--) {
const nextLayerWeights = this.weights[i + 1];
const nextLayerErrors = layerErrors[0];
const currentLayerInputs = layerInputs[i + 1];
const currentActivation = this.activations[i];
const errors = [];
for (let j = 0; j < this.layers[i].outputSize; j++) {
let error = 0;
for (let k = 0; k < this.layers[i + 1].outputSize; k++) {
error += nextLayerErrors[k] * nextLayerWeights[k][j];
}
errors.push(error * this.activationDerivative(currentLayerInputs[j], currentActivation));
}
layerErrors.unshift(errors);
}
// 🔧 Update weights and biases
for (let i = 0; i < this.weights.length; i++) {
const inputs = layerInputs[i];
const errors = layerErrors[i];
const weights = this.weights[i];
const biases = this.biases[i];
for (let j = 0; j < weights.length; j++) {
const weight = weights[j];
for (let k = 0; k < inputs.length; k++) {
weight[k] += learningRate * errors[j] * inputs[k];
}
biases[j] += learningRate * errors[j];
}
}
batchError += Math.abs(outputErrors[0]); // Assuming binary output
}
trainError += batchError;
}
lastTrainLoss = trainError / trainSet.length;
// 🧪 Evaluate on test set if provided
if (testSet) {
let testError = 0;
for (const data of testSet) {
const prediction = this.predict(data.input);
testError += Math.abs(data.output[0] - prediction[0]);
}
lastTestLoss = testError / testSet.length;
}
// 📢 Print progress if needed
if ((epoch + 1) % printEveryEpochs === 0 && this.debug === true) {
console.log(`Epoch ${epoch + 1}, Train Loss: ${lastTrainLoss.toFixed(6)}${testSet ? `, Test Loss: ${lastTestLoss.toFixed(6)}` : ''}`);
}
// 📡 Call the callback function with current progress
if (callback) {
await callback(epoch + 1, lastTrainLoss, lastTestLoss);
}
// Add a small delay to prevent UI freezing
await new Promise(resolve => setTimeout(resolve, 0));
// 🛑 Check for early stopping
if (lastTrainLoss < earlyStopThreshold) {
console.log(`We stopped at epoch ${epoch + 1} with train loss: ${lastTrainLoss.toFixed(6)}${testSet ? ` and test loss: ${lastTestLoss.toFixed(6)}` : ''}`);
break;
}
}
const end = Date.now(); // ⏱️ Stop the timer
// 🧮 Calculate total number of parameters
let totalParams = 0;
for (let i = 0; i < this.weights.length; i++) {
const weightLayer = this.weights[i];
const biasLayer = this.biases[i];
totalParams += weightLayer.flat().length + biasLayer.length;
}
// 📊 Create a summary of the training
const trainingSummary = {
trainLoss: lastTrainLoss,
testLoss: lastTestLoss,
parameters: totalParams,
training: {
time: end - start,
epochs,
learningRate,
batchSize
},
layers: this.layers.map(layer => ({
inputSize: layer.inputSize,
outputSize: layer.outputSize,
activation: layer.activation
}))
};
this.details = trainingSummary;
return trainingSummary;
}
// 🔮 Use the trained network to make predictions
predict(input) {
let layerInput = input;
const allActivations = [input]; // Track all activations through layers
const allRawValues = []; // Track pre-activation values
for (let i = 0; i < this.weights.length; i++) {
const weights = this.weights[i];
const biases = this.biases[i];
const activation = this.activations[i];
const layerOutput = [];
const rawValues = [];
for (let j = 0; j < weights.length; j++) {
const weight = weights[j];
let sum = biases[j];
for (let k = 0; k < layerInput.length; k++) {
sum += layerInput[k] * weight[k];
}
rawValues.push(sum);
layerOutput.push(this.activationFunction(sum, activation));
}
allRawValues.push(rawValues);
allActivations.push(layerOutput);
layerInput = layerOutput;
}
// Store last activation values for visualization
this.lastActivations = allActivations;
this.lastRawValues = allRawValues;
return layerInput;
}
// 💾 Save the model to a file
save(name = 'model') {
const data = {
weights: this.weights,
biases: this.biases,
activations: this.activations,
layers: this.layers,
details: this.details
};
const blob = new Blob([JSON.stringify(data)], {
type: 'application/json'
});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${name}.json`;
a.click();
URL.revokeObjectURL(url);
}
// 📂 Load a saved model from a file
load(callback) {
const handleListener = (event) => {
const file = event.target.files[0];
if (!file) return;
const reader = new FileReader();
reader.onload = (event) => {
const text = event.target.result;
try {
const data = JSON.parse(text);
this.weights = data.weights;
this.biases = data.biases;
this.activations = data.activations;
this.layers = data.layers;
this.details = data.details;
callback();
if (this.debug === true) console.log('Model loaded successfully!');
input.removeEventListener('change', handleListener);
input.remove();
} catch (e) {
input.removeEventListener('change', handleListener);
input.remove();
if (this.debug === true) console.error('Failed to load model:', e);
}
};
reader.readAsText(file);
};
const input = document.createElement('input');
input.type = 'file';
input.accept = '.json';
input.style.opacity = '0';
document.body.append(input);
input.addEventListener('change', handleListener.bind(this));
input.click();
}
}
document.getElementById("loadDataBtn").onclick = () => {
document.getElementById('trainingData').value = `1.0, 0.0, 0.0, 0.0
0.7, 0.7, 0.8, 1
0.0, 1.0, 0.0, 0.5`
document.getElementById('testData').value = `0.4, 0.2, 0.6, 1.0
0.2, 0.82, 0.83, 1.0`
}
// Interface code
const nn = new carbono();
let lossHistory = [];
const ctx = document.getElementById('lossGraph').getContext('2d');
function parseCSV(csv) {
return csv.trim().split('\n').map(row => {
const values = row.split(',').map(Number);
return {
input: values.slice(0, -1),
output: [values[values.length - 1]]
};
});
}
function drawLossGraph() {
ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
const width = ctx.canvas.width;
const height = ctx.canvas.height;
// Combine train and test losses to find overall max for scaling
const maxLoss = Math.max(
...lossHistory.map(loss => Math.max(loss.train, loss.test || 0))
);
// Draw training loss (white line)
ctx.strokeStyle = '#fff';
ctx.beginPath();
lossHistory.forEach((loss, i) => {
const x = (i / (lossHistory.length - 1)) * width;
const y = height - (loss.train / maxLoss) * height;
if (i === 0) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
});
ctx.stroke();
// Draw test loss (gray line)
ctx.strokeStyle = '#777';
ctx.beginPath();
lossHistory.forEach((loss, i) => {
if (loss.test !== undefined) {
const x = (i / (lossHistory.length - 1)) * width;
const y = height - (loss.test / maxLoss) * height;
if (i === 0 || lossHistory[i - 1].test === undefined) ctx.moveTo(x, y);
else ctx.lineTo(x, y);
}
});
ctx.stroke();
}
function createLayerConfigUI(numLayers) {
const container = document.getElementById('hiddenLayersConfig');
container.innerHTML = ''; // Clear previous UI
for (let i = 0; i < numLayers; i++) {
const group = document.createElement('div');
group.className = 'input-group';
const label = document.createElement('label');
label.textContent = `layer ${i + 1} nodes:`;
const input = document.createElement('input');
input.type = 'number';
input.value = 5;
input.dataset.layerIndex = i;
const activationLabel = document.createElement('label');
activationLabel.innerHTML = `<br>activation:`;
const activationSelect = document.createElement('select');
const activations = ['tanh', 'sigmoid', 'relu', 'selu'];
activations.forEach(act => {
const option = document.createElement('option');
option.value = act;
option.textContent = act;
activationSelect.appendChild(option);
});
activationSelect.dataset.layerIndex = i;
group.appendChild(label);
group.appendChild(input);
group.appendChild(activationLabel);
group.appendChild(activationSelect);
container.appendChild(group);
}
}
document.getElementById('numHiddenLayers').addEventListener('change', (event) => {
const numLayers = parseInt(event.target.value);
createLayerConfigUI(numLayers);
});
createLayerConfigUI(document.getElementById('numHiddenLayers').value);
document.getElementById('trainButton').addEventListener('click', async () => {
lossHistory = []; // Initialize as empty array
const trainingData = parseCSV(document.getElementById('trainingData').value);
const testData = parseCSV(document.getElementById('testData').value);
lossHistory = [];
document.getElementById('stats').innerHTML = '';
const numHiddenLayers = parseInt(document.getElementById('numHiddenLayers').value);
const layerConfigs = [];
for (let i = 0; i < numHiddenLayers; i++) {
const sizeInput = document.querySelector(`input[data-layer-index="${i}"]`);
const activationSelect = document.querySelector(`select[data-layer-index="${i}"]`);
layerConfigs.push({
size: parseInt(sizeInput.value),
activation: activationSelect.value
});
}
nn.layers = []; // Reset layers
nn.weights = [];
nn.biases = [];
nn.activations = [];
const numInputs = trainingData[0].input.length;
nn.layer(numInputs, layerConfigs[0].size, layerConfigs[0].activation);
for (let i = 1; i < layerConfigs.length; i++) {
nn.layer(layerConfigs[i - 1].size, layerConfigs[i].size, layerConfigs[i].activation);
}
nn.layer(layerConfigs[layerConfigs.length - 1].size, 1, 'tanh'); // Output layer
const options = {
epochs: parseInt(document.getElementById('epochs').value),
learningRate: parseFloat(document.getElementById('learningRate').value),
batchSize: parseInt(document.getElementById('batchSize').value),
printEveryEpochs: 1,
testSet: testData.length > 0 ? testData : null,
callback: async (epoch, trainLoss, testLoss) => {
lossHistory.push({
train: trainLoss,
test: testLoss
});
drawLossGraph();
document.getElementById('epochBar').style.width =
`${(epoch / options.epochs) * 100}%`;
document.getElementById('stats').innerHTML =
`<p> - current epoch: ${epoch}/${options.epochs}` +
`<br> - train/val loss: ${trainLoss.toFixed(6)}` +
(testLoss ? ` | ${testLoss.toFixed(6)}</p>` : '');
}
}
try {
const trainButton = document.getElementById('trainButton');
trainButton.disabled = true;
trainButton.textContent = 'training...';
const summary = await nn.train(trainingData, options);
trainButton.disabled = false;
trainButton.textContent = 'train';
// Display final summary
document.getElementById('stats').innerHTML += '<strong>Model trained</strong>';
} catch (error) {
console.error('Training error:', error);
document.getElementById('trainButton').disabled = false;
document.getElementById('trainButton').textContent = 'train';
}
});
function drawNetwork() {
const canvas = document.getElementById('networkGraph');
const ctx = canvas.getContext('2d');
ctx.clearRect(0, 0, canvas.width, canvas.height);
if (!nn.lastActivations) return; // Don't draw if no predictions made yet
const padding = 40;
const width = canvas.width - padding * 2;
const height = canvas.height - padding * 2;
// Calculate node positions
const layerPositions = [];
// Add input layer explicitly
const inputLayer = [];
const inputX = padding;
const inputSize = nn.layers[0].inputSize;
for (let i = 0; i < inputSize; i++) {
const inputY = padding + (height * i) / (inputSize - 1);
inputLayer.push({
x: inputX,
y: inputY,
value: nn.lastActivations[0][i]
});
}
layerPositions.push(inputLayer);
// Add hidden layers
for (let i = 1; i < nn.lastActivations.length - 1; i++) {
const layer = nn.lastActivations[i];
const layerNodes = [];
const layerX = padding + (width * i) / (nn.lastActivations.length - 1);
for (let j = 0; j < layer.length; j++) {
const nodeY = padding + (height * j) / (layer.length - 1);
layerNodes.push({
x: layerX,
y: nodeY,
value: layer[j]
});
}
layerPositions.push(layerNodes);
}
// Add output layer explicitly
const outputLayer = [];
const outputX = canvas.width - padding;
const outputY = padding + height / 2; // Center the output node
outputLayer.push({
x: outputX,
y: outputY,
value: nn.lastActivations[nn.lastActivations.length - 1][0]
});
layerPositions.push(outputLayer);
// Draw connections
ctx.lineWidth = 1;
for (let i = 0; i < layerPositions.length - 1; i++) {
const currentLayer = layerPositions[i];
const nextLayer = layerPositions[i + 1];
const weights = nn.weights[i];
for (let j = 0; j < currentLayer.length; j++) {
const nextLayerSize = nextLayer.length;
for (let k = 0; k < nextLayerSize; k++) {
const weight = weights[k][j];
const signal = Math.abs(currentLayer[j].value * weight);
const opacity = Math.min(Math.max(signal, 0.01), 1);
ctx.strokeStyle = `rgba(255, 255, 255, ${opacity})`;
ctx.beginPath();
ctx.moveTo(currentLayer[j].x, currentLayer[j].y);
ctx.lineTo(nextLayer[k].x, nextLayer[k].y);
ctx.stroke();
}
}
}
// Draw nodes
for (const layer of layerPositions) {
for (const node of layer) {
const value = Math.abs(node.value);
const radius = 4;
// Node fill
ctx.fillStyle = `rgba(255, 255, 255, ${Math.min(Math.max(value, 0.2), 1)})`;
ctx.beginPath();
ctx.arc(node.x, node.y, radius, 0, Math.PI * 2);
ctx.fill();
// Node border
ctx.strokeStyle = 'rgba(255, 255, 255, 1.0)';
ctx.lineWidth = 1;
ctx.stroke();
}
}
}
// Modify the predict button event listener
document.getElementById('predictButton').addEventListener('click', () => {
const input = document.getElementById('predictionInput').value
.split(',').map(Number);
const prediction = nn.predict(input);
document.getElementById('predictionResult').innerHTML =
`Prediction: ${prediction[0].toFixed(6)}`;
drawNetwork(); // Draw the network visualization
});
// Add network canvas resize handling
function resizeCanvases() {
const lossCanvas = document.getElementById('lossGraph');
const networkCanvas = document.getElementById('networkGraph');
lossCanvas.width = lossCanvas.parentElement.clientWidth;
lossCanvas.height = lossCanvas.parentElement.clientHeight;
networkCanvas.width = networkCanvas.parentElement.clientWidth;
networkCanvas.height = networkCanvas.parentElement.clientHeight;
drawNetwork(); // Redraw network when canvas is resized
}
window.addEventListener('resize', resizeCanvases);
resizeCanvases();
// Save button functionality
document.getElementById('saveButton').addEventListener('click', () => {
nn.save('model');
});
// Load button functionality
document.getElementById('loadButton').addEventListener('click', () => {
nn.load(() => {
console.log('Model loaded successfully!');
// Optionally, you can add a message to the UI indicating that the model has been loaded
document.getElementById('stats').innerHTML += '<p><strong>Model loaded successfully!</strong></p>';
});
});
</script>
</body>
</html> |