apratim24's picture
Update app.py
a0641a7 verified
raw
history blame
2.98 kB
import gradio as gr
# from langchain.llms import OpenAI
from langchain_openai import OpenAI
from transformers import pipeline
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
import os
openai_api_key = os.getenv("OPENAI_API_KEY")
# Load text generation model
# text_generation_model = pipeline("text-generation", model="openai-community/gpt2-large")
# text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
# Load image captioning model
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
def generate_story(image, theme, genre):
try:
# Preprocess the image
image = image.convert('RGB')
image_features = feature_extractor(images=image, return_tensors="pt")
# Generate image caption
caption_ids = model.generate(image_features.pixel_values, max_length=50, num_beams=3, temperature=1.0)
# Decode the caption
caption_text = tokenizer.batch_decode(caption_ids, skip_special_tokens=True)[0]
# Generate story based on the caption
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within 100 words about {caption_text}."
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
story = llm.invoke(story_prompt)
# story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
return caption_text, story
except Exception as e:
return f"An error occurred during inference: {str(e)}"
# Gradio interface
input_image = gr.Image(label="Select Image",type="pil")
input_theme = gr.Dropdown(["Love and Loss", "Identity and Self-Discovery", "Power and Corruption", "Redemption and Forgiveness", "Survival and Resilience", "Nature and the Environment", "Justice and Injustice", "Friendship and Loyalty", "Hope and Despair"], label="Input Theme")
input_genre = gr.Dropdown(["Fantasy", "Science Fiction", "Poetry", "Mystery/Thriller", "Romance", "Historical Fiction", "Horror", "Adventure", "Drama", "Comedy"], label="Input Genre")
output_caption = gr.Textbox(label="Image Caption", lines=2)
output_text = gr.Textbox(label="Generated Story",lines=8)
examples = [f"example{i}.jpg" for i in range(1,2)]
gr.Interface(
fn=generate_story,
inputs=[input_image, input_theme, input_genre],
outputs=[output_caption, output_text],
examples = examples,
title="Image to Story Generator",
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
).launch()