Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,15 @@
|
|
|
|
|
|
1 |
from langchain_openai import OpenAI
|
|
|
|
|
|
|
2 |
import os
|
3 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
4 |
|
5 |
-
import io
|
6 |
-
import base64
|
7 |
-
import requests
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
width = 1000
|
11 |
-
|
12 |
-
# Function to resize image maintaining aspect ratio with a maximum width of 1000 pixels
|
13 |
-
def resize_image(image, max_width=width):
|
14 |
-
with Image.open(image) as img:
|
15 |
-
ratio = max_width / img.width
|
16 |
-
new_height = int(img.height * ratio)
|
17 |
-
resized_img = img.resize((max_width, new_height), Image.ANTIALIAS)
|
18 |
-
img_byte_arr = io.BytesIO()
|
19 |
-
resized_img.save(img_byte_arr, format=img.format)
|
20 |
-
return img_byte_arr.getvalue()
|
21 |
-
|
22 |
-
# Function to encode the image to base64
|
23 |
-
def encode_image(image):
|
24 |
-
resized_image_bytes = resize_image(image) # Resize the image
|
25 |
-
return base64.b64encode(resized_image_bytes).decode('utf-8')
|
26 |
-
|
27 |
-
# Function to call the API for image and get the response
|
28 |
-
def get_response_for_image(openai_api_key, image):
|
29 |
-
base64_image = encode_image(image)
|
30 |
-
headers = {
|
31 |
-
"Content-Type": "application/json",
|
32 |
-
"Authorization": f"Bearer {openai_api_key}"
|
33 |
-
}
|
34 |
-
payload = {
|
35 |
-
"model": "gpt-4o",
|
36 |
-
"messages": [
|
37 |
-
{
|
38 |
-
"role": "user",
|
39 |
-
"content": [
|
40 |
-
{
|
41 |
-
"type": "text",
|
42 |
-
"text": '''Describe or caption the image within 20 words.'''
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"type": "image_url",
|
46 |
-
"image_url": {
|
47 |
-
"url": f"data:image/jpeg;base64,{base64_image}",
|
48 |
-
"detail": "low"
|
49 |
-
}
|
50 |
-
}
|
51 |
-
]
|
52 |
-
}
|
53 |
-
],
|
54 |
-
"max_tokens": 500
|
55 |
-
}
|
56 |
-
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
57 |
-
return response['choices'][0]['message']['content']
|
58 |
-
|
59 |
-
|
60 |
-
def generate_story(image, theme, genre, word_count):
|
61 |
-
try:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# Decode the caption
|
66 |
-
caption_text = get_response_for_image(openai_api_key, image)
|
67 |
-
|
68 |
-
# Generate story based on the caption
|
69 |
-
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
70 |
-
|
71 |
-
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
|
72 |
-
story = llm.invoke(story_prompt)
|
73 |
-
|
74 |
-
return caption_text, story
|
75 |
-
except Exception as e:
|
76 |
-
return f"An error occurred during inference: {str(e)}"
|
77 |
-
|
78 |
-
|
79 |
-
# Using open source models ----------------------------------------------------
|
80 |
-
|
81 |
-
'''
|
82 |
-
from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
83 |
-
|
84 |
# Load text generation model
|
85 |
-
text_generation_model = pipeline("text-generation", model="
|
|
|
86 |
|
87 |
# Load image captioning model
|
88 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
@@ -93,6 +20,7 @@ feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
|
93 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
94 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
95 |
|
|
|
96 |
def generate_story(image, theme, genre, word_count):
|
97 |
try:
|
98 |
# Preprocess the image
|
@@ -108,15 +36,15 @@ def generate_story(image, theme, genre, word_count):
|
|
108 |
# Generate story based on the caption
|
109 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
110 |
|
111 |
-
|
|
|
|
|
112 |
|
113 |
return caption_text, story
|
114 |
except Exception as e:
|
115 |
return f"An error occurred during inference: {str(e)}"
|
116 |
-
'''
|
117 |
|
118 |
|
119 |
-
# -------------------------------------------------------------------------
|
120 |
|
121 |
# Gradio interface
|
122 |
input_image = gr.Image(label="Select Image",type="pil")
|
@@ -137,4 +65,3 @@ gr.Interface(
|
|
137 |
title="Image to Story Generator",
|
138 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
139 |
).launch()
|
140 |
-
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
from langchain_openai import OpenAI
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
6 |
+
|
7 |
import os
|
8 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load text generation model
|
11 |
+
# text_generation_model = pipeline("text-generation", model="openai-community/gpt2-large")
|
12 |
+
# text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2")
|
13 |
|
14 |
# Load image captioning model
|
15 |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
21 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint)
|
22 |
|
23 |
+
|
24 |
def generate_story(image, theme, genre, word_count):
|
25 |
try:
|
26 |
# Preprocess the image
|
|
|
36 |
# Generate story based on the caption
|
37 |
story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}."
|
38 |
|
39 |
+
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key)
|
40 |
+
story = llm.invoke(story_prompt)
|
41 |
+
# story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"]
|
42 |
|
43 |
return caption_text, story
|
44 |
except Exception as e:
|
45 |
return f"An error occurred during inference: {str(e)}"
|
|
|
46 |
|
47 |
|
|
|
48 |
|
49 |
# Gradio interface
|
50 |
input_image = gr.Image(label="Select Image",type="pil")
|
|
|
65 |
title="Image to Story Generator",
|
66 |
description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.",
|
67 |
).launch()
|
|