import gradio as gr # Using openai models --------------------------------------------------------- from langchain_openai import OpenAI import os openai_api_key = os.getenv("OPENAI_API_KEY") import io import base64 import requests import json width = 800 # Function to call the API for image and get the response def get_response_for_image(openai_api_key, image): base64_image = base64.b64encode(image).decode('utf-8') headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } payload = { "model": "gpt-4o", "messages": [ { "role": "user", "content": [ { "type": "text", "text": '''Describe or caption the image within 20 words. Output in json format with key: Description''' }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", "detail": "low" } } ] } ], "max_tokens": 200 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) return response.json() def generate_story(image, theme, genre, word_count): try: # Convert PIL image to bytes-like format with io.BytesIO() as output: image.save(output, format="JPEG") image_bytes = output.getvalue() # Decode the caption caption_response = get_response_for_image(openai_api_key, image_bytes) json_str = caption_response['choices'][0]['message']['content'] json_str = json_str.replace('```json', '').replace('```', '').strip() content_json = json.loads(json_str) caption_text = content_json['Description'] # Generate story based on the caption story_prompt = f"Write an interesting {theme} story in the {genre} genre about {caption_text}. The story should be within {word_count} words." llm = OpenAI(model_name="gpt-3.5-turbo-instruct", openai_api_key=openai_api_key, max_tokens=1000) story = llm.invoke(story_prompt) return caption_text, story except Exception as e: return f"An error occurred during inference: {str(e)}" # Using open source models ---------------------------------------------------- ''' from transformers import pipeline, AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel # Load text generation model text_generation_model = pipeline("text-generation", model="distilbert/distilgpt2") # Load image captioning model encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint) def generate_story(image, theme, genre, word_count): try: # Preprocess the image image = image.convert('RGB') image_features = feature_extractor(images=image, return_tensors="pt") # Generate image caption caption_ids = model.generate(image_features.pixel_values, max_length=50, num_beams=3, temperature=1.0) # Decode the caption caption_text = tokenizer.batch_decode(caption_ids, skip_special_tokens=True)[0] # Generate story based on the caption story_prompt = f"Write an interesting {theme} story in the {genre} genre. The story should be within {word_count} words about {caption_text}." story = text_generation_model(story_prompt, max_length=150)[0]["generated_text"] return caption_text, story except Exception as e: return f"An error occurred during inference: {str(e)}" ''' # ------------------------------------------------------------------------- # Gradio interface input_image = gr.Image(label="Select Image",type="pil") input_theme = gr.Dropdown(["Love and Loss", "Identity and Self-Discovery", "Power and Corruption", "Redemption and Forgiveness", "Survival and Resilience", "Nature and the Environment", "Justice and Injustice", "Friendship and Loyalty", "Hope and Despair"], label="Input Theme") input_genre = gr.Dropdown(["Fantasy", "Science Fiction", "Poetry", "Mystery/Thriller", "Romance", "Historical Fiction", "Horror", "Adventure", "Drama", "Comedy"], label="Input Genre") output_caption = gr.Textbox(label="Image Caption", lines=3) output_text = gr.Textbox(label="Generated Story",lines=20) examples = [ ["example1.jpg", "Love and Loss", "Fantasy", 80], ["example2.jpg", "Identity and Self-Discovery", "Science Fiction", 100], ["example3.jpg", "Power and Corruption", "Mystery/Thriller", 120], ["example4.jpg", "Redemption and Forgiveness", "Romance", 80], ["example5.jpg", "Survival and Resilience", "Poetry", 150], ["example6.jpg", "Nature and the Environment", "Horror", 120], ["example7.jpg", "Justice and Injustice", "Adventure", 80], ["example8.jpg", "Friendship and Loyalty", "Drama", 100], ] word_count_slider = gr.Slider(minimum=50, maximum=200, value=80, step=5, label="Word Count") gr.Interface( fn=generate_story, inputs=[input_image, input_theme, input_genre, word_count_slider], theme='freddyaboulton/dracula_revamped', outputs=[output_caption, output_text], examples = examples, title="Image to Story Generator", description="Generate a story from an image taking theme and genre as input. It leverages image captioning and text generation models.", ).launch()