File size: 4,100 Bytes
d7750ec
 
f96d4eb
d7750ec
 
 
 
 
 
 
 
f96d4eb
 
 
d7750ec
 
 
f96d4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7750ec
 
8c7b6a7
d7750ec
 
 
 
 
 
 
 
a2c75f4
d7750ec
 
 
 
 
 
 
 
 
 
 
76486da
d7750ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2c75f4
d7750ec
 
 
 
f96d4eb
 
 
 
d7750ec
cf236b2
 
 
 
 
d7750ec
 
cf236b2
d7750ec
cf236b2
d7750ec
f96d4eb
d7750ec
 
a2c75f4
d7750ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import scipy.io.wavfile as wavfile


# Use a pipeline as a high-level helper
from transformers import pipeline

# model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
#               "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")

# object_detector = pipeline("object-detection",
#                 model=model_path)

object_detector = pipeline("object-detection",
                model="facebook/detr-resnet-50")

narrator = pipeline("text-to-speech",
                    model="kakao-enterprise/vits-ljs")


# Define the function to generate audio from text
def generate_audio(text):
    # Generate the narrated text
    narrated_text = narrator(text)

    # Save the audio to a WAV file
    wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
                  data=narrated_text["audio"][0])

    # Return the path to the saved audio file
    return "output.wav"



def read_objects(detection_objects):
    # Initialize counters for each object label
    object_counts = {}

    # Count the occurrences of each label
    for detection in detection_objects:
        label = detection['label']
        if label in object_counts:
            object_counts[label] += 1
        else:
            object_counts[label] = 1

    # Generate the response string
    response = "This picture contains"
    labels = list(object_counts.keys())
    for i, label in enumerate(labels):
        response += f" {object_counts[label]} {label}"
        if object_counts[label] > 1:
            response += "s"
        if i < len(labels) - 2:
            response += ","
        elif i == len(labels) - 2:
            response += " and"

    response += "."

    return response



def draw_bounding_boxes(image, detections, font_path=None, font_size=50):
    # Make a copy of the image to draw on
    draw_image = image.copy()
    draw = ImageDraw.Draw(draw_image)

    # Load custom font or default font if path not provided
    if font_path:
        font = ImageFont.truetype(font_path, font_size)
    else:
        # When font_path is not provided, load default font but its size is fixed
        font = ImageFont.load_default()
        # Increase font size workaround by using a TTF font file, if needed, can download and specify the path

    for detection in detections:
        box = detection['box']
        xmin = box['xmin']
        ymin = box['ymin']
        xmax = box['xmax']
        ymax = box['ymax']

        # Draw the bounding box
        draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=5)

        # Optionally, you can also draw the label and score
        label = detection['label']
        score = detection['score']
        text = f"{label} {score:.2f}"

        # Draw text with background rectangle for visibility
        if font_path:  # Use the custom font with increased size
            text_size = draw.textbbox((xmin, ymin), text, font=font)
        else:
            # Calculate text size using the default font
            text_size = draw.textbbox((xmin, ymin), text)

        draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
        draw.text((xmin, ymin), text, fill="white", font=font)

    return draw_image



def detect_object(image):
    raw_image = image
    output = object_detector(raw_image)
    processed_image = draw_bounding_boxes(raw_image, output)
    natural_text = read_objects(output)
    processed_audio = generate_audio(natural_text)
    return processed_image, processed_audio
    

examples = [
    ["example1.jpg"],
    ["example2.jpg"],
]    

demo = gr.Interface(fn=detect_object,
                    inputs=[gr.Image(label="Select Image",type="pil")],
                    theme='freddyaboulton/dracula_revamped',
                    outputs=[gr.Image(label="Processed Image", type="pil")],
                    examples = examples,
                    title="Object Detector",
                    description="Detect objects in the input image with bounding boxes with audio description.")
demo.launch()