Spaces:
Running
Running
File size: 4,133 Bytes
d7750ec f96d4eb d7750ec f96d4eb d7750ec f96d4eb d7750ec 8c7b6a7 d7750ec a2c75f4 d7750ec 76486da d7750ec a2c75f4 d7750ec f96d4eb d7750ec 6741bd3 cf236b2 d7750ec cf236b2 7e1c7d1 5098176 d7750ec a4e1e59 d7750ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import scipy.io.wavfile as wavfile
# Use a pipeline as a high-level helper
from transformers import pipeline
# model_path = ("../Models/models--facebook--detr-resnet-50/snapshots"
# "/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
# object_detector = pipeline("object-detection",
# model=model_path)
object_detector = pipeline("object-detection",
model="facebook/detr-resnet-50")
narrator = pipeline("text-to-speech",
model="kakao-enterprise/vits-ljs")
# Define the function to generate audio from text
def generate_audio(text):
# Generate the narrated text
narrated_text = narrator(text)
# Save the audio to a WAV file
wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
data=narrated_text["audio"][0])
# Return the path to the saved audio file
return "output.wav"
def read_objects(detection_objects):
# Initialize counters for each object label
object_counts = {}
# Count the occurrences of each label
for detection in detection_objects:
label = detection['label']
if label in object_counts:
object_counts[label] += 1
else:
object_counts[label] = 1
# Generate the response string
response = "This picture contains"
labels = list(object_counts.keys())
for i, label in enumerate(labels):
response += f" {object_counts[label]} {label}"
if object_counts[label] > 1:
response += "s"
if i < len(labels) - 2:
response += ","
elif i == len(labels) - 2:
response += " and"
response += "."
return response
def draw_bounding_boxes(image, detections, font_path=None, font_size=50):
# Make a copy of the image to draw on
draw_image = image.copy()
draw = ImageDraw.Draw(draw_image)
# Load custom font or default font if path not provided
if font_path:
font = ImageFont.truetype(font_path, font_size)
else:
# When font_path is not provided, load default font but its size is fixed
font = ImageFont.load_default()
# Increase font size workaround by using a TTF font file, if needed, can download and specify the path
for detection in detections:
box = detection['box']
xmin = box['xmin']
ymin = box['ymin']
xmax = box['xmax']
ymax = box['ymax']
# Draw the bounding box
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=5)
# Optionally, you can also draw the label and score
label = detection['label']
score = detection['score']
text = f"{label} {score:.2f}"
# Draw text with background rectangle for visibility
if font_path: # Use the custom font with increased size
text_size = draw.textbbox((xmin, ymin), text, font=font)
else:
# Calculate text size using the default font
text_size = draw.textbbox((xmin, ymin), text)
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
draw.text((xmin, ymin), text, fill="white", font=font)
return draw_image
def detect_object(image):
raw_image = image
output = object_detector(raw_image)
processed_image = draw_bounding_boxes(raw_image, output)
natural_text = read_objects(output)
processed_audio = generate_audio(natural_text)
return processed_image, processed_audio
examples = [["example{}.jpg".format(i)] for i in range(1, 4)]
demo = gr.Interface(fn=detect_object,
inputs=[gr.Image(label="Select Image",type="pil")],
theme='freddyaboulton/dracula_revamped',
outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")],
examples = examples,
title="Object Detector",
description="Detect objects in the input image with bounding boxes and audio description.")
demo.launch()
|