import torch import gradio as gr import pandas as pd import matplotlib.pyplot as plt # Use a pipeline as a high-level helper from transformers import pipeline # model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english" # "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13") # analyzer = pipeline("text-classification", model=model_path) analyzer = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") # print(analyzer(["This production is good", "This product was quite expensive"])) def sentiment_analyzer(review): sentiment = analyzer(review) return sentiment[0]['label'] def sentiment_pie_chart(df): sentiment_counts = df['Sentiment'].value_counts() # Create a pie chart fig, ax = plt.subplots() sentiment_counts.plot(kind='pie', autopct='%1.1f%%', colors=['green', 'red'], ax=ax) # Remove the y-axis label ax.set_ylabel('') ax.set_title('Review Sentiment Chart') return fig def read_reviews_and_analyze_sentiment(file_object): # Load the Excel file into a DataFrame df = pd.read_excel(file_object) # Check if 'Review' column is in the DataFrame if 'Reviews' not in df.columns: raise ValueError("Excel file must contain a 'Reviews' column.") # Apply the get_sentiment function to each review in the DataFrame df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer) df = df[['Sentiment'] + [col for col in df.columns if col != 'Sentiment']] chart_object = sentiment_pie_chart(df) return df, chart_object # result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx") # print(result) demo = gr.Interface(fn=read_reviews_and_analyze_sentiment, inputs=[gr.File(file_types=["xlsx"], label="Upload your reviews file")], outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")], title="Sentiment Analyzer", description="Analyze the sentiment based on reviews (Excel file .xlsx must contain a 'Reviews' column)") demo.launch()