File size: 6,043 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from __future__ import annotations

import os

from typing import Any
from pydantic import BaseModel, Field, SecretStr

from openhands.core.logger import LOG_DIR


class LLMConfig(BaseModel):
    """Configuration for the LLM model.



    Attributes:

        model: The model to use.

        api_key: The API key to use.

        base_url: The base URL for the API. This is necessary for local LLMs. It is also used for Azure embeddings.

        api_version: The version of the API.

        embedding_model: The embedding model to use.

        embedding_base_url: The base URL for the embedding API.

        embedding_deployment_name: The name of the deployment for the embedding API. This is used for Azure OpenAI.

        aws_access_key_id: The AWS access key ID.

        aws_secret_access_key: The AWS secret access key.

        aws_region_name: The AWS region name.

        num_retries: The number of retries to attempt.

        retry_multiplier: The multiplier for the exponential backoff.

        retry_min_wait: The minimum time to wait between retries, in seconds. This is exponential backoff minimum. For models with very low limits, this can be set to 15-20.

        retry_max_wait: The maximum time to wait between retries, in seconds. This is exponential backoff maximum.

        timeout: The timeout for the API.

        max_message_chars: The approximate max number of characters in the content of an event included in the prompt to the LLM. Larger observations are truncated.

        temperature: The temperature for the API.

        top_p: The top p for the API.

        custom_llm_provider: The custom LLM provider to use. This is undocumented in openhands, and normally not used. It is documented on the litellm side.

        max_input_tokens: The maximum number of input tokens. Note that this is currently unused, and the value at runtime is actually the total tokens in OpenAI (e.g. 128,000 tokens for GPT-4).

        max_output_tokens: The maximum number of output tokens. This is sent to the LLM.

        input_cost_per_token: The cost per input token. This will available in logs for the user to check.

        output_cost_per_token: The cost per output token. This will available in logs for the user to check.

        ollama_base_url: The base URL for the OLLAMA API.

        drop_params: Drop any unmapped (unsupported) params without causing an exception.

        modify_params: Modify params allows litellm to do transformations like adding a default message, when a message is empty.

        disable_vision: If model is vision capable, this option allows to disable image processing (useful for cost reduction).

        reasoning_effort: The effort to put into reasoning. This is a string that can be one of 'low', 'medium', 'high', or 'none'. Exclusive for o1 models.

        caching_prompt: Use the prompt caching feature if provided by the LLM and supported by the provider.

        log_completions: Whether to log LLM completions to the state.

        log_completions_folder: The folder to log LLM completions to. Required if log_completions is True.

        custom_tokenizer: A custom tokenizer to use for token counting.

        native_tool_calling: Whether to use native tool calling if supported by the model. Can be True, False, or not set.

    """

    model: str = Field(default='claude-3-5-sonnet-20241022')
    api_key: SecretStr | None = Field(default=None)
    base_url: str | None = Field(default=None)
    api_version: str | None = Field(default=None)
    embedding_model: str = Field(default='local')
    embedding_base_url: str | None = Field(default=None)
    embedding_deployment_name: str | None = Field(default=None)
    aws_access_key_id: SecretStr | None = Field(default=None)
    aws_secret_access_key: SecretStr | None = Field(default=None)
    aws_region_name: str | None = Field(default=None)
    openrouter_site_url: str = Field(default='https://docs.all-hands.dev/')
    openrouter_app_name: str = Field(default='OpenHands')
    num_retries: int = Field(default=8)
    retry_multiplier: float = Field(default=2)
    retry_min_wait: int = Field(default=15)
    retry_max_wait: int = Field(default=120)
    timeout: int | None = Field(default=None)
    max_message_chars: int = Field(
        default=30_000
    )  # maximum number of characters in an observation's content when sent to the llm
    temperature: float = Field(default=0.0)
    top_p: float = Field(default=1.0)
    custom_llm_provider: str | None = Field(default=None)
    max_input_tokens: int | None = Field(default=None)
    max_output_tokens: int | None = Field(default=None)
    input_cost_per_token: float | None = Field(default=None)
    output_cost_per_token: float | None = Field(default=None)
    ollama_base_url: str | None = Field(default=None)
    # This setting can be sent in each call to litellm
    drop_params: bool = Field(default=True)
    # Note: this setting is actually global, unlike drop_params
    modify_params: bool = Field(default=True)
    disable_vision: bool | None = Field(default=None)
    caching_prompt: bool = Field(default=True)
    log_completions: bool = Field(default=False)
    log_completions_folder: str = Field(default=os.path.join(LOG_DIR, 'completions'))
    custom_tokenizer: str | None = Field(default=None)
    native_tool_calling: bool | None = Field(default=None)
    
    model_config = {'extra': 'forbid'}

    def model_post_init(self, __context: Any):
        """Post-initialization hook to assign OpenRouter-related variables to environment variables.



        This ensures that these values are accessible to litellm at runtime.

        """
        super().model_post_init(__context)

        # Assign OpenRouter-specific variables to environment variables
        if self.openrouter_site_url:
            os.environ['OR_SITE_URL'] = self.openrouter_site_url
        if self.openrouter_app_name:
            os.environ['OR_APP_NAME'] = self.openrouter_app_name