import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("meta-llama/Meta-Llama-3.1-8B-Instruct") client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Act as a Prompt Enhancer AI that takes user-input prompts and transforms them into more engaging, detailed, and thought-provoking questions. Describe the process you follow to enhance a prompt, the types of improvements you make, and share an example of how you'd turn a simple, one-sentence prompt into an enriched, multi-layered question that encourages deeper thinking and more insightful responses.", label="System message", visible=False), gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() ##################################### # import gradio as gr # gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() ######################################## # from openai import OpenAI # import streamlit as st # import os # import sys # from dotenv import load_dotenv, dotenv_values # load_dotenv() # st.title("ChatGPT-like clone") # client = OpenAI(api_key=os.environ.get["OPENAI_API_KEY"]) # if "openai_model" not in st.session_state: # st.session_state["openai_model"] = "gpt-3.5-turbo" # if "messages" not in st.session_state: # st.session_state.messages = [] # for message in st.session_state.messages: # with st.chat_message(message["role"]): # st.markdown(message["content"]) # if prompt := st.chat_input("What is up?"): # st.session_state.messages.append({"role": "user", "content": prompt}) # with st.chat_message("user"): # st.markdown(prompt) # with st.chat_message("assistant"): # stream = client.chat.completions.create( # model=st.session_state["openai_model"], # messages=[ # {"role": m["role"], "content": m["content"]} # for m in st.session_state.messages # ], # stream=True, # ) # response = st.write_stream(stream) # st.session_state.messages.append({"role": "assistant", "content": response})