Spaces:
Sleeping
Sleeping
'literally should just work rn'
Browse files
app.py
CHANGED
@@ -1,16 +1,23 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
4 |
from PIL import Image
|
5 |
-
import requests
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
generated_ids = model.generate(pixel_values)
|
16 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
+
# Streamlit app
|
6 |
+
st.title("Handwritten Text Recognition")
|
7 |
+
|
8 |
+
# Upload an image
|
9 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
10 |
|
11 |
+
if uploaded_file is not None:
|
12 |
+
image = Image.open(uploaded_file).convert("RGB")
|
13 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
14 |
+
|
15 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
16 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
17 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
18 |
|
19 |
+
generated_ids = model.generate(pixel_values)
|
20 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
21 |
+
|
22 |
+
st.write("Recognized Text:")
|
23 |
+
st.write(generated_text)
|