Spaces:
Running
on
Zero
Running
on
Zero
Upload 8 files
Browse files- app.py +181 -0
- example_images/ad_analysis.png +0 -0
- example_images/brand_comparison.jpg +0 -0
- example_images/iphone_vs_samsung.jpg +0 -0
- example_images/market_trends.png +0 -0
- example_images/social_media_post.png +0 -0
- example_images/target_audience.jpg +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
|
3 |
+
import re
|
4 |
+
import time
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import spaces
|
8 |
+
import subprocess
|
9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
+
|
11 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
|
12 |
+
model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3",
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
trust_remote_code=True).to("cuda")
|
15 |
+
|
16 |
+
BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
17 |
+
EOS_WORDS_IDS = [processor.tokenizer.eos_token_id]
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def model_inference(
|
21 |
+
images, text, assistant_prefix, decoding_strategy, temperature, max_new_tokens,
|
22 |
+
repetition_penalty, top_p
|
23 |
+
):
|
24 |
+
if text == "" and not images:
|
25 |
+
gr.Error("Please input a query and optionally image(s).")
|
26 |
+
|
27 |
+
if text == "" and images:
|
28 |
+
gr.Error("Please input a text query along the image(s).")
|
29 |
+
|
30 |
+
# Check if the input is related to marketing
|
31 |
+
marketing_keywords = ["product", "brand", "advertisement", "marketing", "strategy", "comparison", "analysis", "trend", "audience"]
|
32 |
+
if not any(keyword in text.lower() for keyword in marketing_keywords):
|
33 |
+
return "Your question is not in the marketing area. Please upload another image or try again."
|
34 |
+
|
35 |
+
if isinstance(images, Image.Image):
|
36 |
+
images = [images]
|
37 |
+
|
38 |
+
resulting_messages = [
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": [{"type": "image"}] + [
|
42 |
+
{"type": "text", "text": text}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
]
|
46 |
+
|
47 |
+
if assistant_prefix:
|
48 |
+
text = f"{assistant_prefix} {text}"
|
49 |
+
|
50 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
51 |
+
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
52 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
53 |
+
|
54 |
+
generation_args = {
|
55 |
+
"max_new_tokens": max_new_tokens,
|
56 |
+
"repetition_penalty": repetition_penalty,
|
57 |
+
}
|
58 |
+
|
59 |
+
assert decoding_strategy in [
|
60 |
+
"Greedy",
|
61 |
+
"Top P Sampling",
|
62 |
+
]
|
63 |
+
if decoding_strategy == "Greedy":
|
64 |
+
generation_args["do_sample"] = False
|
65 |
+
elif decoding_strategy == "Top P Sampling":
|
66 |
+
generation_args["temperature"] = temperature
|
67 |
+
generation_args["do_sample"] = True
|
68 |
+
generation_args["top_p"] = top_p
|
69 |
+
|
70 |
+
generation_args.update(inputs)
|
71 |
+
|
72 |
+
# Generate
|
73 |
+
generated_ids = model.generate(**generation_args)
|
74 |
+
|
75 |
+
generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
|
76 |
+
return generated_texts[0]
|
77 |
+
|
78 |
+
with gr.Blocks(fill_height=True) as demo:
|
79 |
+
gr.Markdown("## Marketing Vision App π")
|
80 |
+
gr.Markdown("This app uses the [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) model to answer questions related to marketing. Upload an image and a text query, or try one of the examples.")
|
81 |
+
gr.Markdown("**Disclaimer:** This app may not consistently follow prompts or handle complex tasks. However, adding a prefix to the assistant's response can significantly improve the output. You could also play with the parameters such as the temperature in non-greedy mode.")
|
82 |
+
with gr.Column():
|
83 |
+
image_input = gr.Image(label="Upload your Image", type="pil", scale=1)
|
84 |
+
query_input = gr.Textbox(label="Prompt")
|
85 |
+
assistant_prefix = gr.Textbox(label="Assistant Prefix", placeholder="Let's think step by step.")
|
86 |
+
|
87 |
+
submit_btn = gr.Button("Submit")
|
88 |
+
output = gr.Textbox(label="Output")
|
89 |
+
|
90 |
+
with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"):
|
91 |
+
examples=[
|
92 |
+
["example_images/iphone_vs_samsung.jpg", "I want to buy a smartphone with features similar to the one in the photo. Suggest models and provide a comparison.", None, "Product Recommendation", 0.5, 768, 1.1, 0.85],
|
93 |
+
["example_images/ad_analysis.png", "Analyze this advertisement and explain its marketing strategy.", None, "Advertisement Analysis", 0.5, 768, 1.1, 0.85],
|
94 |
+
["example_images/market_trends.png", "Analyze this marketing chart and explain the market trends it represents.", None, "Market Trend Analysis", 0.5, 768, 1.1, 0.85],
|
95 |
+
["example_images/social_media_post.png", "Critique this social media post about product quality and suggest improvements.", None, "Social Media Post Analysis", 0.5, 768, 1.1, 0.85],
|
96 |
+
["example_images/brand_comparison.jpg", "Compare these three brands based on their price strategies.", None, "Brand Comparison", 0.5, 768, 1.1, 0.85],
|
97 |
+
["example_images/target_audience.jpg", "Analyze this image and suggest a target audience for the product.", None, "Target Audience Analysis", 0.5, 768, 1.1, 0.85]
|
98 |
+
]
|
99 |
+
|
100 |
+
# Hyper-parameters for generation
|
101 |
+
max_new_tokens = gr.Slider(
|
102 |
+
minimum=8,
|
103 |
+
maximum=1024,
|
104 |
+
value=512,
|
105 |
+
step=1,
|
106 |
+
interactive=True,
|
107 |
+
label="Maximum number of new tokens to generate",
|
108 |
+
)
|
109 |
+
repetition_penalty = gr.Slider(
|
110 |
+
minimum=0.01,
|
111 |
+
maximum=5.0,
|
112 |
+
value=1.2,
|
113 |
+
step=0.01,
|
114 |
+
interactive=True,
|
115 |
+
label="Repetition penalty",
|
116 |
+
info="1.0 is equivalent to no penalty",
|
117 |
+
)
|
118 |
+
temperature = gr.Slider(
|
119 |
+
minimum=0.0,
|
120 |
+
maximum=5.0,
|
121 |
+
value=0.4,
|
122 |
+
step=0.1,
|
123 |
+
interactive=True,
|
124 |
+
label="Sampling temperature",
|
125 |
+
info="Higher values will produce more diverse outputs.",
|
126 |
+
)
|
127 |
+
top_p = gr.Slider(
|
128 |
+
minimum=0.01,
|
129 |
+
maximum=0.99,
|
130 |
+
value=0.8,
|
131 |
+
step=0.01,
|
132 |
+
interactive=True,
|
133 |
+
label="Top P",
|
134 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
135 |
+
)
|
136 |
+
decoding_strategy = gr.Radio(
|
137 |
+
[
|
138 |
+
"Greedy",
|
139 |
+
"Top P Sampling",
|
140 |
+
],
|
141 |
+
value="Greedy",
|
142 |
+
label="Decoding strategy",
|
143 |
+
interactive=True,
|
144 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
145 |
+
)
|
146 |
+
decoding_strategy.change(
|
147 |
+
fn=lambda selection: gr.Slider(
|
148 |
+
visible=(
|
149 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
150 |
+
)
|
151 |
+
),
|
152 |
+
inputs=decoding_strategy,
|
153 |
+
outputs=temperature,
|
154 |
+
)
|
155 |
+
|
156 |
+
decoding_strategy.change(
|
157 |
+
fn=lambda selection: gr.Slider(
|
158 |
+
visible=(
|
159 |
+
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
|
160 |
+
)
|
161 |
+
),
|
162 |
+
inputs=decoding_strategy,
|
163 |
+
outputs=repetition_penalty,
|
164 |
+
)
|
165 |
+
decoding_strategy.change(
|
166 |
+
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
|
167 |
+
inputs=decoding_strategy,
|
168 |
+
outputs=top_p,
|
169 |
+
)
|
170 |
+
gr.Examples(
|
171 |
+
examples = examples,
|
172 |
+
inputs=[image_input, query_input, assistant_prefix, decoding_strategy, temperature,
|
173 |
+
max_new_tokens, repetition_penalty, top_p],
|
174 |
+
outputs=output,
|
175 |
+
fn=model_inference
|
176 |
+
)
|
177 |
+
|
178 |
+
submit_btn.click(model_inference, inputs = [image_input, query_input, assistant_prefix, decoding_strategy, temperature,
|
179 |
+
max_new_tokens, repetition_penalty, top_p], outputs=output)
|
180 |
+
|
181 |
+
demo.launch(debug=True)
|
example_images/ad_analysis.png
ADDED
example_images/brand_comparison.jpg
ADDED
example_images/iphone_vs_samsung.jpg
ADDED
example_images/market_trends.png
ADDED
example_images/social_media_post.png
ADDED
example_images/target_audience.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
accelerate
|
3 |
+
huggingface_hub
|
4 |
+
gradio
|
5 |
+
git+https://github.com/andimarafioti/transformers.git@idefics3
|
6 |
+
spaces
|