arad1367's picture
Update app.py
2f43f91 verified
raw
history blame
5.54 kB
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
# Run the commands from setup.sh to install poppler-utils
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
# Run the setup commands
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
# Call the Poppler installation check
install_poppler()
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
images = convert_from_path(pdf_file.name)
num_images = len(images)
RAG.index(
input_path=pdf_file.name,
index_name="image_index",
store_collection_with_index=False,
overwrite=True
)
# Search the query in the RAG model
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
# Retrieve the page number and process image
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
css = """
.duplicate-button {
background-color: #6272a4;
color: white;
font-weight: bold;
border-radius: 5px;
margin-top: 20px;
padding: 10px;
text-align: center;
}
.gradio-container {
background-color: #282a36;
color: #f8f8f2;
font-family: 'Courier New', Courier, monospace;
padding: 20px;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
"""
explanation = """
### Multimodal RAG with Image Query
This demo showcases the **Multimodal RAG (Retriever-Augmented Generation)** model. The RAG system integrates retrieval and generation, allowing it to retrieve relevant information from a multimodal database (like PDFs with text and images) and then generate detailed responses.
We use **ColPali**, a state-of-the-art multimodal retriever, combined with the **Byaldi** library from **answer.ai**, which simplifies using ColPali. The language model used for generating answers is **Qwen/Qwen2-VL-2B-Instruct**, a powerful vision-language model capable of understanding both text and images.
"""
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
<br>
Made with πŸ’– by Pejman Ebrahimi
</div>
"""
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
# Launch the Gradio app
demo = gr.Interface(
fn=process_pdf_and_query,
inputs=[pdf_input, query_input],
outputs=[output_text, output_images],
title="Multimodal RAG with Image Query - By Pejman Ebrahimi - Please like the space if it is useful",
theme='freddyaboulton/dracula_revamped',
css=css,
description=explanation,
allow_flagging="auto"
)
with demo:
gr.HTML(footer)
duplicate_button
demo.launch(debug=True)