Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from pdf2image import convert_from_path | |
from byaldi import RAGMultiModalModel | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import subprocess | |
# Install flash-attn if not already installed | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Load the RAG Model and the Qwen2-VL-2B-Instruct model | |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", | |
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval() | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
def process_pdf_and_query(pdf_file, user_query): | |
# Convert the PDF to images | |
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path | |
num_images = len(images) | |
# Indexing the PDF in RAG | |
RAG.index( | |
input_path=pdf_file.name, | |
index_name="image_index", # index will be saved at index_root/index_name/ | |
store_collection_with_index=False, | |
overwrite=True | |
) | |
# Search the query in the RAG model | |
results = RAG.search(user_query, k=1) | |
if not results: | |
return "No results found.", num_images | |
# Retrieve the page number and process image | |
image_index = results[0]["page_num"] - 1 | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": images[image_index], | |
}, | |
{"type": "text", "text": user_query}, | |
], | |
} | |
] | |
# Generate text with the Qwen model | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Generate the output response | |
generated_ids = model.generate(**inputs, max_new_tokens=50) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0], num_images | |
# Define the Gradio Interface | |
pdf_input = gr.File(label="Upload PDF") # Single PDF file input | |
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF") # User query input | |
output_text = gr.Textbox(label="Model Answer") # Output for the model's answer | |
output_images = gr.Textbox(label="Number of Images in PDF") # Output for number of images | |
# Launch the Gradio app | |
demo = gr.Interface( | |
fn=process_pdf_and_query, | |
inputs=[pdf_input, query_input], # List of inputs | |
outputs=[output_text, output_images], # List of outputs | |
title="Multimodal RAG with Image Query - By Pejman Ebrahimi" | |
) | |
demo.launch(debug=True) # Start the interface | |