Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,23 +9,18 @@ import torch
|
|
9 |
import torchvision
|
10 |
import subprocess
|
11 |
|
12 |
-
# Run the commands from setup.sh to install poppler-utils
|
13 |
def install_poppler():
|
14 |
try:
|
15 |
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
16 |
except FileNotFoundError:
|
17 |
print("Poppler not found. Installing...")
|
18 |
-
# Run the setup commands
|
19 |
subprocess.run("apt-get update", shell=True)
|
20 |
subprocess.run("apt-get install -y poppler-utils", shell=True)
|
21 |
|
22 |
-
# Call the Poppler installation check
|
23 |
install_poppler()
|
24 |
|
25 |
-
# Install flash-attn if not already installed
|
26 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
27 |
|
28 |
-
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
|
29 |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
30 |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
31 |
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
@@ -33,24 +28,20 @@ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_rem
|
|
33 |
|
34 |
@spaces.GPU()
|
35 |
def process_pdf_and_query(pdf_file, user_query):
|
36 |
-
|
37 |
-
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path
|
38 |
num_images = len(images)
|
39 |
|
40 |
-
# Indexing the PDF in RAG
|
41 |
RAG.index(
|
42 |
input_path=pdf_file.name,
|
43 |
-
index_name="image_index",
|
44 |
store_collection_with_index=False,
|
45 |
overwrite=True
|
46 |
)
|
47 |
|
48 |
-
# Search the query in the RAG model
|
49 |
results = RAG.search(user_query, k=1)
|
50 |
if not results:
|
51 |
return "No results found.", num_images
|
52 |
|
53 |
-
# Retrieve the page number and process image
|
54 |
image_index = results[0]["page_num"] - 1
|
55 |
messages = [
|
56 |
{
|
@@ -65,7 +56,6 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
65 |
}
|
66 |
]
|
67 |
|
68 |
-
# Generate text with the Qwen model
|
69 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
70 |
image_inputs, video_inputs = process_vision_info(messages)
|
71 |
inputs = processor(
|
@@ -76,8 +66,7 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
76 |
return_tensors="pt",
|
77 |
)
|
78 |
inputs = inputs.to("cuda")
|
79 |
-
|
80 |
-
# Generate the output response
|
81 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
82 |
generated_ids_trimmed = [
|
83 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
@@ -88,36 +77,87 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
88 |
|
89 |
return output_text[0], num_images
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
gr.HTML(footer)
|
122 |
|
123 |
-
demo.launch(debug=True)
|
|
|
9 |
import torchvision
|
10 |
import subprocess
|
11 |
|
|
|
12 |
def install_poppler():
|
13 |
try:
|
14 |
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
15 |
except FileNotFoundError:
|
16 |
print("Poppler not found. Installing...")
|
|
|
17 |
subprocess.run("apt-get update", shell=True)
|
18 |
subprocess.run("apt-get install -y poppler-utils", shell=True)
|
19 |
|
|
|
20 |
install_poppler()
|
21 |
|
|
|
22 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
23 |
|
|
|
24 |
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
25 |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
26 |
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
|
|
28 |
|
29 |
@spaces.GPU()
|
30 |
def process_pdf_and_query(pdf_file, user_query):
|
31 |
+
images = convert_from_path(pdf_file.name)
|
|
|
32 |
num_images = len(images)
|
33 |
|
|
|
34 |
RAG.index(
|
35 |
input_path=pdf_file.name,
|
36 |
+
index_name="image_index",
|
37 |
store_collection_with_index=False,
|
38 |
overwrite=True
|
39 |
)
|
40 |
|
|
|
41 |
results = RAG.search(user_query, k=1)
|
42 |
if not results:
|
43 |
return "No results found.", num_images
|
44 |
|
|
|
45 |
image_index = results[0]["page_num"] - 1
|
46 |
messages = [
|
47 |
{
|
|
|
56 |
}
|
57 |
]
|
58 |
|
|
|
59 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
image_inputs, video_inputs = process_vision_info(messages)
|
61 |
inputs = processor(
|
|
|
66 |
return_tensors="pt",
|
67 |
)
|
68 |
inputs = inputs.to("cuda")
|
69 |
+
|
|
|
70 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
71 |
generated_ids_trimmed = [
|
72 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
77 |
|
78 |
return output_text[0], num_images
|
79 |
|
80 |
+
css = """
|
81 |
+
body {
|
82 |
+
font-family: Arial, sans-serif;
|
83 |
+
background-color: #f0f0f0;
|
84 |
+
}
|
85 |
+
.container {
|
86 |
+
max-width: 800px;
|
87 |
+
margin: 0 auto;
|
88 |
+
padding: 20px;
|
89 |
+
background-color: white;
|
90 |
+
border-radius: 10px;
|
91 |
+
box-shadow: 0 0 10px rgba(0,0,0,0.1);
|
92 |
+
}
|
93 |
+
.title {
|
94 |
+
font-size: 24px;
|
95 |
+
font-weight: bold;
|
96 |
+
text-align: center;
|
97 |
+
margin-bottom: 20px;
|
98 |
+
}
|
99 |
+
.submit-btn {
|
100 |
+
background-color: #4CAF50;
|
101 |
+
color: white;
|
102 |
+
padding: 10px 20px;
|
103 |
+
border: none;
|
104 |
+
border-radius: 5px;
|
105 |
+
cursor: pointer;
|
106 |
+
font-size: 16px;
|
107 |
+
}
|
108 |
+
.submit-btn:hover {
|
109 |
+
background-color: #45a049;
|
110 |
+
}
|
111 |
+
.duplicate-button {
|
112 |
+
background-color: #4CAF50;
|
113 |
+
color: white;
|
114 |
+
padding: 10px 20px;
|
115 |
+
border: none;
|
116 |
+
border-radius: 5px;
|
117 |
+
cursor: pointer;
|
118 |
+
font-size: 16px;
|
119 |
+
margin-top: 20px;
|
120 |
+
}
|
121 |
+
"""
|
122 |
+
|
123 |
+
explanation = """
|
124 |
+
<div style="background-color: #f9f9f9; padding: 15px; border-radius: 5px; margin-bottom: 20px;">
|
125 |
+
<h3>About Multimodal RAG</h3>
|
126 |
+
<p>Multimodal RAG (Retrieval-Augmented Generation) combines text and image processing to provide more context-aware responses. This demo uses:</p>
|
127 |
+
<ul>
|
128 |
+
<li><strong>ColPali</strong>: A multimodal retriever for efficient information retrieval from images and text.</li>
|
129 |
+
<li><strong>Byaldi</strong>: A new library by answer.ai that simplifies the use of ColPali.</li>
|
130 |
+
<li><strong>Qwen/Qwen2-VL-2B-Instruct</strong>: A large language model capable of processing both text and visual inputs.</li>
|
131 |
+
</ul>
|
132 |
+
<p>This combination allows for more accurate and context-aware responses to queries about uploaded PDFs.</p>
|
133 |
+
</div>
|
134 |
+
"""
|
135 |
+
|
136 |
+
footer = """
|
137 |
+
<div style="text-align: center; margin-top: 20px;">
|
138 |
+
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
139 |
+
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
140 |
+
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
|
141 |
+
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
|
142 |
+
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
|
143 |
+
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
|
144 |
+
<br>
|
145 |
+
Made with π by Pejman Ebrahimi
|
146 |
+
</div>
|
147 |
+
"""
|
148 |
+
|
149 |
+
with gr.Blocks(css=css, theme='freddyaboulton/dracula_revamped') as demo:
|
150 |
+
gr.HTML('<h1 style="text-align: center; font-size: 32px;"><a href="https://github.com/arad1367" target="_blank" style="text-decoration: none; color: inherit;">Multimodal RAG with Image Query - By Pejman Ebrahimi</a></h1>')
|
151 |
+
gr.HTML(explanation)
|
152 |
+
pdf_input = gr.File(label="Upload PDF")
|
153 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
|
154 |
+
submit_btn = gr.Button("Submit", elem_classes="submit-btn")
|
155 |
+
output_text = gr.Textbox(label="Model Answer")
|
156 |
+
output_images = gr.Textbox(label="Number of Images in PDF")
|
157 |
+
|
158 |
+
submit_btn.click(process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])
|
159 |
+
|
160 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
161 |
gr.HTML(footer)
|
162 |
|
163 |
+
demo.launch(debug=True)
|