import spaces import gradio as gr from pdf2image import convert_from_path from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import subprocess # Install flash-attn if not already installed subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Load the RAG Model and the Qwen2-VL-2B-Instruct model RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) @spaces.GPU() def process_pdf_and_query(pdf_file, user_query): # Convert the PDF to images images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path num_images = len(images) # Indexing the PDF in RAG RAG.index( input_path=pdf_file.name, index_name="image_index", # index will be saved at index_root/index_name/ store_collection_with_index=False, overwrite=True ) # Search the query in the RAG model results = RAG.search(user_query, k=1) if not results: return "No results found.", num_images # Retrieve the page number and process image image_index = results[0]["page_num"] - 1 messages = [ { "role": "user", "content": [ { "type": "image", "image": images[image_index], }, {"type": "text", "text": user_query}, ], } ] # Generate text with the Qwen model text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Generate the output response generated_ids = model.generate(**inputs, max_new_tokens=50) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0], num_images # Define the Gradio Interface pdf_input = gr.File(label="Upload PDF") # Single PDF file input query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF") # User query input output_text = gr.Textbox(label="Model Answer") # Output for the model's answer output_images = gr.Textbox(label="Number of Images in PDF") # Output for number of images # Launch the Gradio app demo = gr.Interface( fn=process_pdf_and_query, inputs=[pdf_input, query_input], # List of inputs outputs=[output_text, output_images], # List of outputs title="Multimodal RAG with Image Query - By Pejman Ebrahimi" ) demo.launch(debug=True) # Start the interface