Spaces:
Running
on
Zero
Running
on
Zero
# Import libraries | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
import spaces | |
device="cuda" | |
# Load the model and tokenizer | |
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16) | |
model = model.to(device='cuda') | |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True) | |
model.eval() | |
# Define a function to generate a response | |
def generate_response(image, question): | |
msgs = [{'role': 'user', 'content': question}] | |
res = model.chat( | |
image=image, | |
msgs=msgs, | |
tokenizer=tokenizer, | |
sampling=True, | |
temperature=0.7, | |
stream=True | |
) | |
generated_text = "" | |
for new_text in res: | |
generated_text += new_text | |
return generated_text | |
# Create the footer with links | |
footer = """ | |
<div style="text-align: center; margin-top: 20px;"> | |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> | | |
<a href="https://github.com/arad1367/Visual_QA_MiniCPM-Llama3-V-2_5_GradioApp" target="_blank">GitHub</a> | | |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> | |
<br> | |
Made with π by Pejman Ebrahimi | |
</div> | |
""" | |
# Create a Gradio interface using gr.Blocks | |
with gr.Blocks(theme='abidlabs/dracula_revamped') as demo: | |
gr.Markdown("Visual Question Answering - Complete chart and image analysis") | |
gr.Markdown("Input an image and a question related to the image to receive a response.") | |
image_input = gr.Image(type="pil", label="Image") | |
question_input = gr.Textbox(label="Question") | |
output_text = gr.Textbox(label="Response") | |
image_input.change(generate_response, inputs=[image_input, question_input], outputs=output_text) | |
gr.HTML(footer) | |
# Launch the app | |
demo.launch(debug=True) | |