Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,15 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStream
|
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
-
# Define constants and configuration
|
10 |
MODEL_LIST = ["mistralai/mathstral-7B-v0.1"]
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
12 |
MODEL = os.environ.get("MODEL_ID")
|
13 |
|
|
|
|
|
14 |
PLACEHOLDER = """
|
15 |
<center>
|
16 |
-
<p>MathΣtral - Your Math advisor</p>
|
17 |
-
<p>Hi! I'm MisMath. A Math advisor. My model is based on mathstral-7B-v0.1. Feel free to ask your questions</p>
|
18 |
-
<p>Mathstral 7B is a model specializing in mathematical and scientific tasks, based on Mistral 7B.</p>
|
19 |
-
<p>mathstral-7B-v0.1 is the first Mathstral model</p>
|
20 |
</center>
|
21 |
"""
|
22 |
|
@@ -27,86 +25,78 @@ CSS = """
|
|
27 |
background: black !important;
|
28 |
border-radius: 100vh !important;
|
29 |
}
|
30 |
-
|
31 |
text-align: center;
|
32 |
-
font-size: 2em;
|
33 |
-
color: #333;
|
34 |
}
|
35 |
"""
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
40 |
|
41 |
-
# Configuration for model quantization
|
42 |
quantization_config = BitsAndBytesConfig(
|
43 |
load_in_4bit=True,
|
44 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
45 |
bnb_4bit_use_double_quant=True,
|
46 |
-
bnb_4bit_quant_type="nf4"
|
47 |
-
)
|
48 |
|
49 |
-
# Initialize tokenizer and model
|
50 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
51 |
model = AutoModelForCausalLM.from_pretrained(
|
52 |
MODEL,
|
53 |
torch_dtype=torch.bfloat16,
|
54 |
device_map="auto",
|
55 |
-
quantization_config=quantization_config
|
56 |
-
)
|
57 |
|
58 |
-
# Define the chat streaming function
|
59 |
@spaces.GPU()
|
60 |
def stream_chat(
|
61 |
-
message: str,
|
62 |
history: list,
|
63 |
system_prompt: str,
|
64 |
-
temperature: float = 0.8,
|
65 |
-
max_new_tokens: int = 1024,
|
66 |
-
top_p: float = 1.0,
|
67 |
-
top_k: int = 20,
|
68 |
penalty: float = 1.2,
|
69 |
):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
81 |
-
|
82 |
generate_kwargs = dict(
|
83 |
-
input_ids=input_ids,
|
84 |
-
max_new_tokens=max_new_tokens,
|
85 |
-
do_sample=False if temperature == 0 else True,
|
86 |
-
top_p=top_p,
|
87 |
-
top_k=top_k,
|
88 |
-
temperature=temperature,
|
89 |
-
eos_token_id=[128001,
|
90 |
streamer=streamer,
|
91 |
)
|
92 |
|
93 |
with torch.no_grad():
|
94 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
95 |
thread.start()
|
96 |
-
|
97 |
buffer = ""
|
98 |
-
final_output = ""
|
99 |
for new_text in streamer:
|
100 |
buffer += new_text
|
101 |
-
|
102 |
-
if "MisMath:" in buffer:
|
103 |
-
final_output = buffer.split("MisMath:")[-1].strip()
|
104 |
-
yield final_output
|
105 |
|
106 |
-
|
107 |
chatbot = gr.Chatbot(height=500, placeholder=PLACEHOLDER)
|
108 |
|
109 |
-
# Define the footer with links
|
110 |
footer = """
|
111 |
<div style="text-align: center; margin-top: 20px;">
|
112 |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
@@ -117,7 +107,6 @@ footer = """
|
|
117 |
</div>
|
118 |
"""
|
119 |
|
120 |
-
# Create and launch the Gradio interface
|
121 |
with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
|
122 |
gr.HTML(TITLE)
|
123 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
@@ -128,7 +117,7 @@ with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
|
|
128 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
129 |
additional_inputs=[
|
130 |
gr.Textbox(
|
131 |
-
value="You are a helpful assistant
|
132 |
label="System Prompt",
|
133 |
render=False,
|
134 |
),
|
@@ -183,6 +172,6 @@ with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
|
|
183 |
)
|
184 |
gr.HTML(footer)
|
185 |
|
186 |
-
|
187 |
if __name__ == "__main__":
|
188 |
-
demo.launch()
|
|
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
|
|
9 |
MODEL_LIST = ["mistralai/mathstral-7B-v0.1"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
MODEL = os.environ.get("MODEL_ID")
|
12 |
|
13 |
+
TITLE = "<h1><center>MathΣtral</center></h1>"
|
14 |
+
|
15 |
PLACEHOLDER = """
|
16 |
<center>
|
17 |
+
<p>MathΣtral - I'm MisMath,Your Math advisor</p>
|
|
|
|
|
|
|
18 |
</center>
|
19 |
"""
|
20 |
|
|
|
25 |
background: black !important;
|
26 |
border-radius: 100vh !important;
|
27 |
}
|
28 |
+
h3 {
|
29 |
text-align: center;
|
|
|
|
|
30 |
}
|
31 |
"""
|
32 |
|
33 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
|
|
|
|
34 |
|
|
|
35 |
quantization_config = BitsAndBytesConfig(
|
36 |
load_in_4bit=True,
|
37 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
38 |
bnb_4bit_use_double_quant=True,
|
39 |
+
bnb_4bit_quant_type="nf4")
|
|
|
40 |
|
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
42 |
model = AutoModelForCausalLM.from_pretrained(
|
43 |
MODEL,
|
44 |
torch_dtype=torch.bfloat16,
|
45 |
device_map="auto",
|
46 |
+
quantization_config=quantization_config)
|
|
|
47 |
|
|
|
48 |
@spaces.GPU()
|
49 |
def stream_chat(
|
50 |
+
message: str,
|
51 |
history: list,
|
52 |
system_prompt: str,
|
53 |
+
temperature: float = 0.8,
|
54 |
+
max_new_tokens: int = 1024,
|
55 |
+
top_p: float = 1.0,
|
56 |
+
top_k: int = 20,
|
57 |
penalty: float = 1.2,
|
58 |
):
|
59 |
+
print(f'message: {message}')
|
60 |
+
print(f'history: {history}')
|
61 |
+
|
62 |
+
conversation = [
|
63 |
+
{"role": "system", "content": system_prompt}
|
64 |
+
]
|
65 |
+
for prompt, answer in history:
|
66 |
+
conversation.extend([
|
67 |
+
{"role": "user", "content": prompt},
|
68 |
+
{"role": "assistant", "content": answer},
|
69 |
+
])
|
70 |
+
|
71 |
+
conversation.append({"role": "user", "content": message})
|
72 |
+
|
73 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
74 |
+
|
75 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
76 |
+
|
77 |
generate_kwargs = dict(
|
78 |
+
input_ids=input_ids,
|
79 |
+
max_new_tokens = max_new_tokens,
|
80 |
+
do_sample = False if temperature == 0 else True,
|
81 |
+
top_p = top_p,
|
82 |
+
top_k = top_k,
|
83 |
+
temperature = temperature,
|
84 |
+
eos_token_id=[128001,128008,128009],
|
85 |
streamer=streamer,
|
86 |
)
|
87 |
|
88 |
with torch.no_grad():
|
89 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
90 |
thread.start()
|
91 |
+
|
92 |
buffer = ""
|
|
|
93 |
for new_text in streamer:
|
94 |
buffer += new_text
|
95 |
+
yield buffer
|
|
|
|
|
|
|
96 |
|
97 |
+
|
98 |
chatbot = gr.Chatbot(height=500, placeholder=PLACEHOLDER)
|
99 |
|
|
|
100 |
footer = """
|
101 |
<div style="text-align: center; margin-top: 20px;">
|
102 |
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
|
|
107 |
</div>
|
108 |
"""
|
109 |
|
|
|
110 |
with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
|
111 |
gr.HTML(TITLE)
|
112 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
|
|
117 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
118 |
additional_inputs=[
|
119 |
gr.Textbox(
|
120 |
+
value="You are a helpful assistant in mathematical and scientific tasks",
|
121 |
label="System Prompt",
|
122 |
render=False,
|
123 |
),
|
|
|
172 |
)
|
173 |
gr.HTML(footer)
|
174 |
|
175 |
+
|
176 |
if __name__ == "__main__":
|
177 |
+
demo.launch()
|