import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
# Define constants and configuration
MODEL_LIST = ["mistralai/mathstral-7B-v0.1"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
PLACEHOLDER = """
MathΣtral - Your Math advisor
Hi! I'm MisMath. A Math advisor. My model is based on mathstral-7B-v0.1. Feel free to ask your questions
Mathstral 7B is a model specializing in mathematical and scientific tasks, based on Mistral 7B.
mathstral-7B-v0.1 is the first Mathstral model
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h1 {
text-align: center;
font-size: 2em;
color: #333;
}
"""
TITLE = "MathΣtral - Your Math advisor
"
device = "cuda" # for GPU usage or "cpu" for CPU usage
# Configuration for model quantization
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
# Define the chat streaming function
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
# Prepare the conversation context
conversation_text = system_prompt + "\n"
for _, answer in history:
conversation_text += f"MisMath: {answer}\n"
conversation_text += f"User: {message}\nMisMath:"
# Tokenize the conversation text
input_ids = tokenizer(conversation_text, return_tensors="pt").input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
final_output = ""
for new_text in streamer:
buffer += new_text
# Extract only the final response after the last "MisMath:"
if "MisMath:" in buffer:
final_output = buffer.split("MisMath:")[-1].strip()
yield final_output
# Define the Gradio chatbot component
chatbot = gr.Chatbot(height=500, placeholder=PLACEHOLDER)
# Define the footer with links
footer = """
"""
# Create and launch the Gradio interface
with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a helpful assistant for Math questions and complex calculations and programming and your name is MisMath",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Can you explain the Pythagorean theorem?"],
["What is the derivative of sin(x)?"],
["Solve the integral of e^(2x) dx."],
["How does quantum entanglement work?"],
],
cache_examples=False,
)
gr.HTML(footer)
# Launch the application
if __name__ == "__main__":
demo.launch()