import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig import gradio as gr from threading import Thread # Define constants and configuration MODEL_LIST = ["mistralai/mathstral-7B-v0.1"] HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = os.environ.get("MODEL_ID") PLACEHOLDER = """

MathΣtral - Your Math advisor

Hi! I'm MisMath. A Math advisor. My model is based on mathstral-7B-v0.1. Feel free to ask your questions

Mathstral 7B is a model specializing in mathematical and scientific tasks, based on Mistral 7B.

mathstral-7B-v0.1 is the first Mathstral model

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h1 { text-align: center; font-size: 2em; color: #333; } """ TITLE = "

MathΣtral - Your Math advisor

" device = "cuda" # for GPU usage or "cpu" for CPU usage # Configuration for model quantization quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config ) # Define the chat streaming function @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.8, max_new_tokens: int = 1024, top_p: float = 1.0, top_k: int = 20, penalty: float = 1.2, ): # Prepare the conversation context conversation_text = system_prompt + "\n" for _, answer in history: conversation_text += f"MisMath: {answer}\n" conversation_text += f"User: {message}\nMisMath:" # Tokenize the conversation text input_ids = tokenizer(conversation_text, return_tensors="pt").input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, eos_token_id=[128001, 128008, 128009], streamer=streamer, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" final_output = "" for new_text in streamer: buffer += new_text # Extract only the final response after the last "MisMath:" if "MisMath:" in buffer: final_output = buffer.split("MisMath:")[-1].strip() yield final_output # Define the Gradio chatbot component chatbot = gr.Chatbot(height=500, placeholder=PLACEHOLDER) # Define the footer with links footer = """
LinkedIn | GitHub | Live demo of my PhD defense
Made with 💖 by Pejman Ebrahimi
""" # Create and launch the Gradio interface with gr.Blocks(css=CSS, theme="Ajaxon6255/Emerald_Isle") as demo: gr.HTML(TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Textbox( value="You are a helpful assistant for Math questions and complex calculations and programming and your name is MisMath", label="System Prompt", render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=20, step=1, value=20, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False, ), ], examples=[ ["Can you explain the Pythagorean theorem?"], ["What is the derivative of sin(x)?"], ["Solve the integral of e^(2x) dx."], ["How does quantum entanglement work?"], ], cache_examples=False, ) gr.HTML(footer) # Launch the application if __name__ == "__main__": demo.launch()