File size: 13,168 Bytes
5112867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from enum import Enum
import os
from pathlib import Path
import shutil
import subprocess
from typing import Any, Dict
import ruamel.yaml
import torch
from poetry_diacritizer.models.baseline import BaseLineModel
from poetry_diacritizer.models.cbhg import CBHGModel
from poetry_diacritizer.models.gpt import GPTModel
from poetry_diacritizer.models.seq2seq import Decoder as Seq2SeqDecoder, Encoder as Seq2SeqEncoder, Seq2Seq
from poetry_diacritizer.models.tacotron_based import (
Decoder as TacotronDecoder,
Encoder as TacotronEncoder,
Tacotron,
)
from poetry_diacritizer.options import AttentionType, LossType, OptimizerType
from poetry_diacritizer.util.text_encoders import (
ArabicEncoderWithStartSymbol,
BasicArabicEncoder,
TextEncoder,
)
class ConfigManager:
"""Co/home/almodhfer/Projects/daicritization/temp_results/CA_MSA/cbhg-new/model-10.ptnfig Manager"""
def __init__(self, config_path: str, model_kind: str):
available_models = ["baseline", "cbhg", "seq2seq", "tacotron_based", "gpt"]
if model_kind not in available_models:
raise TypeError(f"model_kind must be in {available_models}")
self.config_path = Path(config_path)
self.model_kind = model_kind
self.yaml = ruamel.yaml.YAML()
self.config: Dict[str, Any] = self._load_config()
self.git_hash = self._get_git_hash()
self.session_name = ".".join(
[
self.config["data_type"],
self.config["session_name"],
f"{model_kind}",
]
)
self.data_dir = Path(
os.path.join(self.config["data_directory"], self.config["data_type"])
)
self.base_dir = Path(
os.path.join(self.config["log_directory"], self.session_name)
)
self.log_dir = Path(os.path.join(self.base_dir, "logs"))
self.prediction_dir = Path(os.path.join(self.base_dir, "predictions"))
self.plot_dir = Path(os.path.join(self.base_dir, "plots"))
self.models_dir = Path(os.path.join(self.base_dir, "models"))
if "sp_model_path" in self.config:
self.sp_model_path = self.config["sp_model_path"]
else:
self.sp_model_path = None
self.text_encoder: TextEncoder = self.get_text_encoder()
self.config["len_input_symbols"] = len(self.text_encoder.input_symbols)
self.config["len_target_symbols"] = len(self.text_encoder.target_symbols)
if self.model_kind in ["seq2seq", "tacotron_based"]:
self.config["attention_type"] = AttentionType[self.config["attention_type"]]
self.config["optimizer"] = OptimizerType[self.config["optimizer_type"]]
def _load_config(self):
with open(self.config_path, "rb") as model_yaml:
_config = self.yaml.load(model_yaml)
return _config
@staticmethod
def _get_git_hash():
try:
return (
subprocess.check_output(["git", "describe", "--always"])
.strip()
.decode()
)
except Exception as e:
print(f"WARNING: could not retrieve git hash. {e}")
def _check_hash(self):
try:
git_hash = (
subprocess.check_output(["git", "describe", "--always"])
.strip()
.decode()
)
if self.config["git_hash"] != git_hash:
print(
f"""WARNING: git hash mismatch. Current: {git_hash}.
Config hash: {self.config['git_hash']}"""
)
except Exception as e:
print(f"WARNING: could not check git hash. {e}")
@staticmethod
def _print_dict_values(values, key_name, level=0, tab_size=2):
tab = level * tab_size * " "
print(tab + "-", key_name, ":", values)
def _print_dictionary(self, dictionary, recursion_level=0):
for key in dictionary.keys():
if isinstance(key, dict):
recursion_level += 1
self._print_dictionary(dictionary[key], recursion_level)
else:
self._print_dict_values(
dictionary[key], key_name=key, level=recursion_level
)
def print_config(self):
print("\nCONFIGURATION", self.session_name)
self._print_dictionary(self.config)
def update_config(self):
self.config["git_hash"] = self._get_git_hash()
def dump_config(self):
self.update_config()
_config = {}
for key, val in self.config.items():
if isinstance(val, Enum):
_config[key] = val.name
else:
_config[key] = val
with open(self.base_dir / "config.yml", "w") as model_yaml:
self.yaml.dump(_config, model_yaml)
def create_remove_dirs(
self,
clear_dir: bool = False,
clear_logs: bool = False,
clear_weights: bool = False,
clear_all: bool = False,
):
self.base_dir.mkdir(exist_ok=True, parents=True)
self.plot_dir.mkdir(exist_ok=True)
self.prediction_dir.mkdir(exist_ok=True)
if clear_dir:
delete = input(f"Delete {self.log_dir} AND {self.models_dir}? (y/[n])")
if delete == "y":
shutil.rmtree(self.log_dir, ignore_errors=True)
shutil.rmtree(self.models_dir, ignore_errors=True)
if clear_logs:
delete = input(f"Delete {self.log_dir}? (y/[n])")
if delete == "y":
shutil.rmtree(self.log_dir, ignore_errors=True)
if clear_weights:
delete = input(f"Delete {self.models_dir}? (y/[n])")
if delete == "y":
shutil.rmtree(self.models_dir, ignore_errors=True)
self.log_dir.mkdir(exist_ok=True)
self.models_dir.mkdir(exist_ok=True)
def get_last_model_path(self):
"""
Given a checkpoint, get the last save model name
Args:
checkpoint (str): the path where models are saved
"""
models = os.listdir(self.models_dir)
models = [model for model in models if model[-3:] == ".pt"]
if len(models) == 0:
return None
_max = max(int(m.split(".")[0].split("-")[0]) for m in models)
model_name = f"{_max}-snapshot.pt"
last_model_path = os.path.join(self.models_dir, model_name)
return last_model_path
def load_model(self, model_path: str = None):
"""
loading a model from path
Args:
checkpoint (str): the path to the model
name (str): the name of the model, which is in the path
model (Tacotron): the model to load its save state
optimizer: the optimizer to load its saved state
"""
model = self.get_model()
with open(self.base_dir / f"{self.model_kind}_network.txt", "w") as file:
file.write(str(model))
if model_path is None:
last_model_path = self.get_last_model_path()
if last_model_path is None:
return model, 1
else:
last_model_path = model_path
saved_model = torch.load(last_model_path)
out = model.load_state_dict(saved_model["model_state_dict"])
print(out)
global_step = saved_model["global_step"] + 1
return model, global_step
def get_model(self, ignore_hash=False):
if not ignore_hash:
self._check_hash()
if self.model_kind == "cbhg":
return self.get_cbhg()
elif self.model_kind == "seq2seq":
return self.get_seq2seq()
elif self.model_kind == "tacotron_based":
return self.get_tacotron_based()
elif self.model_kind == "baseline":
return self.get_baseline()
elif self.model_kind == "gpt":
return self.get_gpt()
def get_gpt(self):
model = GPTModel(
self.config["base_model_path"],
freeze=self.config["freeze"],
n_layer=self.config["n_layer"],
use_lstm=self.config["use_lstm"],
)
return model
def get_baseline(self):
model = BaseLineModel(
embedding_dim=self.config["embedding_dim"],
inp_vocab_size=self.config["len_input_symbols"],
targ_vocab_size=self.config["len_target_symbols"],
layers_units=self.config["layers_units"],
use_batch_norm=self.config["use_batch_norm"],
)
return model
def get_cbhg(self):
model = CBHGModel(
embedding_dim=self.config["embedding_dim"],
inp_vocab_size=self.config["len_input_symbols"],
targ_vocab_size=self.config["len_target_symbols"],
use_prenet=self.config["use_prenet"],
prenet_sizes=self.config["prenet_sizes"],
cbhg_gru_units=self.config["cbhg_gru_units"],
cbhg_filters=self.config["cbhg_filters"],
cbhg_projections=self.config["cbhg_projections"],
post_cbhg_layers_units=self.config["post_cbhg_layers_units"],
post_cbhg_use_batch_norm=self.config["post_cbhg_use_batch_norm"],
)
return model
def get_seq2seq(self):
encoder = Seq2SeqEncoder(
embedding_dim=self.config["encoder_embedding_dim"],
inp_vocab_size=self.config["len_input_symbols"],
layers_units=self.config["encoder_units"],
use_batch_norm=self.config["use_batch_norm"],
)
decoder = TacotronDecoder(
self.config["len_target_symbols"],
start_symbol_id=self.text_encoder.start_symbol_id,
embedding_dim=self.config["decoder_embedding_dim"],
encoder_dim=self.config["encoder_dim"],
decoder_units=self.config["decoder_units"],
decoder_layers=self.config["decoder_layers"],
attention_type=self.config["attention_type"],
attention_units=self.config["attention_units"],
is_attention_accumulative=self.config["is_attention_accumulative"],
use_prenet=self.config["use_decoder_prenet"],
prenet_depth=self.config["decoder_prenet_depth"],
teacher_forcing_probability=self.config["teacher_forcing_probability"],
)
model = Tacotron(encoder=encoder, decoder=decoder)
return model
def get_tacotron_based(self):
encoder = TacotronEncoder(
embedding_dim=self.config["encoder_embedding_dim"],
inp_vocab_size=self.config["len_input_symbols"],
prenet_sizes=self.config["prenet_sizes"],
use_prenet=self.config["use_encoder_prenet"],
cbhg_gru_units=self.config["cbhg_gru_units"],
cbhg_filters=self.config["cbhg_filters"],
cbhg_projections=self.config["cbhg_projections"],
)
decoder = TacotronDecoder(
self.config["len_target_symbols"],
start_symbol_id=self.text_encoder.start_symbol_id,
embedding_dim=self.config["decoder_embedding_dim"],
encoder_dim=self.config["encoder_dim"],
decoder_units=self.config["decoder_units"],
decoder_layers=self.config["decoder_layers"],
attention_type=self.config["attention_type"],
attention_units=self.config["attention_units"],
is_attention_accumulative=self.config["is_attention_accumulative"],
use_prenet=self.config["use_decoder_prenet"],
prenet_depth=self.config["decoder_prenet_depth"],
teacher_forcing_probability=self.config["teacher_forcing_probability"],
)
model = Tacotron(encoder=encoder, decoder=decoder)
return model
def get_text_encoder(self):
"""Getting the class of TextEncoder from config"""
if self.config["text_cleaner"] not in [
"basic_cleaners",
"valid_arabic_cleaners",
None,
]:
raise Exception(f"cleaner is not known {self.config['text_cleaner']}")
if self.config["text_encoder"] == "BasicArabicEncoder":
text_encoder = BasicArabicEncoder(
cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path
)
elif self.config["text_encoder"] == "ArabicEncoderWithStartSymbol":
text_encoder = ArabicEncoderWithStartSymbol(
cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path
)
else:
raise Exception(
f"the text encoder is not found {self.config['text_encoder']}"
)
return text_encoder
def get_loss_type(self):
try:
loss_type = LossType[self.config["loss_type"]]
except:
raise Exception(f"The loss type is not correct {self.config['loss_type']}")
return loss_type
if __name__ == "__main__":
config_path = "config/tacotron-base-config.yml"
model_kind = "tacotron"
config = ConfigManager(config_path=config_path, model_kind=model_kind)
|