File size: 13,168 Bytes
5112867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from enum import Enum
import os
from pathlib import Path
import shutil
import subprocess
from typing import Any, Dict

import ruamel.yaml
import torch

from poetry_diacritizer.models.baseline import BaseLineModel
from poetry_diacritizer.models.cbhg import CBHGModel
from poetry_diacritizer.models.gpt import GPTModel
from poetry_diacritizer.models.seq2seq import Decoder as Seq2SeqDecoder, Encoder as Seq2SeqEncoder, Seq2Seq
from poetry_diacritizer.models.tacotron_based import (
    Decoder as TacotronDecoder,
    Encoder as TacotronEncoder,
    Tacotron,
)

from poetry_diacritizer.options import AttentionType, LossType, OptimizerType
from poetry_diacritizer.util.text_encoders import (
    ArabicEncoderWithStartSymbol,
    BasicArabicEncoder,
    TextEncoder,
)


class ConfigManager:
    """Co/home/almodhfer/Projects/daicritization/temp_results/CA_MSA/cbhg-new/model-10.ptnfig Manager"""

    def __init__(self, config_path: str, model_kind: str):
        available_models = ["baseline", "cbhg", "seq2seq", "tacotron_based", "gpt"]
        if model_kind not in available_models:
            raise TypeError(f"model_kind must be in {available_models}")
        self.config_path = Path(config_path)
        self.model_kind = model_kind
        self.yaml = ruamel.yaml.YAML()
        self.config: Dict[str, Any] = self._load_config()
        self.git_hash = self._get_git_hash()
        self.session_name = ".".join(
            [
                self.config["data_type"],
                self.config["session_name"],
                f"{model_kind}",
            ]
        )

        self.data_dir = Path(
            os.path.join(self.config["data_directory"], self.config["data_type"])
        )
        self.base_dir = Path(
            os.path.join(self.config["log_directory"], self.session_name)
        )
        self.log_dir = Path(os.path.join(self.base_dir, "logs"))
        self.prediction_dir = Path(os.path.join(self.base_dir, "predictions"))
        self.plot_dir = Path(os.path.join(self.base_dir, "plots"))
        self.models_dir = Path(os.path.join(self.base_dir, "models"))
        if "sp_model_path" in self.config:
            self.sp_model_path = self.config["sp_model_path"]
        else:
            self.sp_model_path = None
        self.text_encoder: TextEncoder = self.get_text_encoder()
        self.config["len_input_symbols"] = len(self.text_encoder.input_symbols)
        self.config["len_target_symbols"] = len(self.text_encoder.target_symbols)
        if self.model_kind in ["seq2seq", "tacotron_based"]:
            self.config["attention_type"] = AttentionType[self.config["attention_type"]]
        self.config["optimizer"] = OptimizerType[self.config["optimizer_type"]]

    def _load_config(self):
        with open(self.config_path, "rb") as model_yaml:
            _config = self.yaml.load(model_yaml)
        return _config

    @staticmethod
    def _get_git_hash():
        try:
            return (
                subprocess.check_output(["git", "describe", "--always"])
                .strip()
                .decode()
            )
        except Exception as e:
            print(f"WARNING: could not retrieve git hash. {e}")

    def _check_hash(self):
        try:
            git_hash = (
                subprocess.check_output(["git", "describe", "--always"])
                .strip()
                .decode()
            )
            if self.config["git_hash"] != git_hash:
                print(
                    f"""WARNING: git hash mismatch. Current: {git_hash}.
                    Config hash: {self.config['git_hash']}"""
                )
        except Exception as e:
            print(f"WARNING: could not check git hash. {e}")

    @staticmethod
    def _print_dict_values(values, key_name, level=0, tab_size=2):
        tab = level * tab_size * " "
        print(tab + "-", key_name, ":", values)

    def _print_dictionary(self, dictionary, recursion_level=0):
        for key in dictionary.keys():
            if isinstance(key, dict):
                recursion_level += 1
                self._print_dictionary(dictionary[key], recursion_level)
            else:
                self._print_dict_values(
                    dictionary[key], key_name=key, level=recursion_level
                )

    def print_config(self):
        print("\nCONFIGURATION", self.session_name)
        self._print_dictionary(self.config)

    def update_config(self):
        self.config["git_hash"] = self._get_git_hash()

    def dump_config(self):
        self.update_config()
        _config = {}
        for key, val in self.config.items():
            if isinstance(val, Enum):
                _config[key] = val.name
            else:
                _config[key] = val
        with open(self.base_dir / "config.yml", "w") as model_yaml:
            self.yaml.dump(_config, model_yaml)

    def create_remove_dirs(
        self,
        clear_dir: bool = False,
        clear_logs: bool = False,
        clear_weights: bool = False,
        clear_all: bool = False,
    ):
        self.base_dir.mkdir(exist_ok=True, parents=True)
        self.plot_dir.mkdir(exist_ok=True)
        self.prediction_dir.mkdir(exist_ok=True)
        if clear_dir:
            delete = input(f"Delete {self.log_dir} AND {self.models_dir}? (y/[n])")
            if delete == "y":
                shutil.rmtree(self.log_dir, ignore_errors=True)
                shutil.rmtree(self.models_dir, ignore_errors=True)
        if clear_logs:
            delete = input(f"Delete {self.log_dir}? (y/[n])")
            if delete == "y":
                shutil.rmtree(self.log_dir, ignore_errors=True)
        if clear_weights:
            delete = input(f"Delete {self.models_dir}? (y/[n])")
            if delete == "y":
                shutil.rmtree(self.models_dir, ignore_errors=True)
        self.log_dir.mkdir(exist_ok=True)
        self.models_dir.mkdir(exist_ok=True)

    def get_last_model_path(self):
        """
        Given a checkpoint, get the last save model name
        Args:
        checkpoint (str): the path where models are saved
        """
        models = os.listdir(self.models_dir)
        models = [model for model in models if model[-3:] == ".pt"]
        if len(models) == 0:
            return None
        _max = max(int(m.split(".")[0].split("-")[0]) for m in models)
        model_name = f"{_max}-snapshot.pt"
        last_model_path = os.path.join(self.models_dir, model_name)

        return last_model_path

    def load_model(self, model_path: str = None):
        """
        loading a model from path
        Args:
        checkpoint (str): the path to the model
        name (str): the name of the model, which is in the path
        model (Tacotron): the model  to load its save state
        optimizer: the optimizer to load its saved state
        """

        model = self.get_model()

        with open(self.base_dir / f"{self.model_kind}_network.txt", "w") as file:
            file.write(str(model))

        if model_path is None:
            last_model_path = self.get_last_model_path()
            if last_model_path is None:
                return model, 1
        else:
            last_model_path = model_path

        saved_model = torch.load(last_model_path)
        out = model.load_state_dict(saved_model["model_state_dict"])
        print(out)
        global_step = saved_model["global_step"] + 1
        return model, global_step

    def get_model(self, ignore_hash=False):
        if not ignore_hash:
            self._check_hash()
        if self.model_kind == "cbhg":
            return self.get_cbhg()

        elif self.model_kind == "seq2seq":
            return self.get_seq2seq()

        elif self.model_kind == "tacotron_based":
            return self.get_tacotron_based()

        elif self.model_kind == "baseline":
            return self.get_baseline()

        elif self.model_kind == "gpt":
            return self.get_gpt()

    def get_gpt(self):
        model = GPTModel(
            self.config["base_model_path"],
            freeze=self.config["freeze"],
            n_layer=self.config["n_layer"],
            use_lstm=self.config["use_lstm"],
        )
        return model

    def get_baseline(self):
        model = BaseLineModel(
            embedding_dim=self.config["embedding_dim"],
            inp_vocab_size=self.config["len_input_symbols"],
            targ_vocab_size=self.config["len_target_symbols"],
            layers_units=self.config["layers_units"],
            use_batch_norm=self.config["use_batch_norm"],
        )

        return model

    def get_cbhg(self):
        model = CBHGModel(
            embedding_dim=self.config["embedding_dim"],
            inp_vocab_size=self.config["len_input_symbols"],
            targ_vocab_size=self.config["len_target_symbols"],
            use_prenet=self.config["use_prenet"],
            prenet_sizes=self.config["prenet_sizes"],
            cbhg_gru_units=self.config["cbhg_gru_units"],
            cbhg_filters=self.config["cbhg_filters"],
            cbhg_projections=self.config["cbhg_projections"],
            post_cbhg_layers_units=self.config["post_cbhg_layers_units"],
            post_cbhg_use_batch_norm=self.config["post_cbhg_use_batch_norm"],
        )

        return model

    def get_seq2seq(self):
        encoder = Seq2SeqEncoder(
            embedding_dim=self.config["encoder_embedding_dim"],
            inp_vocab_size=self.config["len_input_symbols"],
            layers_units=self.config["encoder_units"],
            use_batch_norm=self.config["use_batch_norm"],
        )

        decoder = TacotronDecoder(
            self.config["len_target_symbols"],
            start_symbol_id=self.text_encoder.start_symbol_id,
            embedding_dim=self.config["decoder_embedding_dim"],
            encoder_dim=self.config["encoder_dim"],
            decoder_units=self.config["decoder_units"],
            decoder_layers=self.config["decoder_layers"],
            attention_type=self.config["attention_type"],
            attention_units=self.config["attention_units"],
            is_attention_accumulative=self.config["is_attention_accumulative"],
            use_prenet=self.config["use_decoder_prenet"],
            prenet_depth=self.config["decoder_prenet_depth"],
            teacher_forcing_probability=self.config["teacher_forcing_probability"],
        )

        model = Tacotron(encoder=encoder, decoder=decoder)

        return model

    def get_tacotron_based(self):
        encoder = TacotronEncoder(
            embedding_dim=self.config["encoder_embedding_dim"],
            inp_vocab_size=self.config["len_input_symbols"],
            prenet_sizes=self.config["prenet_sizes"],
            use_prenet=self.config["use_encoder_prenet"],
            cbhg_gru_units=self.config["cbhg_gru_units"],
            cbhg_filters=self.config["cbhg_filters"],
            cbhg_projections=self.config["cbhg_projections"],
        )

        decoder = TacotronDecoder(
            self.config["len_target_symbols"],
            start_symbol_id=self.text_encoder.start_symbol_id,
            embedding_dim=self.config["decoder_embedding_dim"],
            encoder_dim=self.config["encoder_dim"],
            decoder_units=self.config["decoder_units"],
            decoder_layers=self.config["decoder_layers"],
            attention_type=self.config["attention_type"],
            attention_units=self.config["attention_units"],
            is_attention_accumulative=self.config["is_attention_accumulative"],
            use_prenet=self.config["use_decoder_prenet"],
            prenet_depth=self.config["decoder_prenet_depth"],
            teacher_forcing_probability=self.config["teacher_forcing_probability"],
        )

        model = Tacotron(encoder=encoder, decoder=decoder)

        return model

    def get_text_encoder(self):
        """Getting the class of TextEncoder from config"""
        if self.config["text_cleaner"] not in [
            "basic_cleaners",
            "valid_arabic_cleaners",
            None,
        ]:
            raise Exception(f"cleaner is not known {self.config['text_cleaner']}")

        if self.config["text_encoder"] == "BasicArabicEncoder":
            text_encoder = BasicArabicEncoder(
                cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path
            )
        elif self.config["text_encoder"] == "ArabicEncoderWithStartSymbol":
            text_encoder = ArabicEncoderWithStartSymbol(
                cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path
            )
        else:
            raise Exception(
                f"the text encoder is not found {self.config['text_encoder']}"
            )

        return text_encoder

    def get_loss_type(self):
        try:
            loss_type = LossType[self.config["loss_type"]]
        except:
            raise Exception(f"The loss type is not correct {self.config['loss_type']}")
        return loss_type


if __name__ == "__main__":
    config_path = "config/tacotron-base-config.yml"
    model_kind = "tacotron"
    config = ConfigManager(config_path=config_path, model_kind=model_kind)