File size: 9,207 Bytes
5112867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from typing import List
from typing import List, Optional

import torch
from torch import nn
from torch.autograd import Variable

from poetry_diacritizer.modules.attention import AttentionWrapper
from poetry_diacritizer.modules.layers import ConvNorm
from poetry_diacritizer.modules.tacotron_modules import CBHG, Prenet
from poetry_diacritizer.options import AttentionType
from poetry_diacritizer.util.utils import get_mask_from_lengths


class Seq2Seq(nn.Module):
    def __init__(self, encoder: nn.Module, decoder: nn.Module):
        super().__init__()
        # Trying smaller std
        self.encoder = encoder
        self.decoder = decoder

    def forward(
        self,
        src: torch.Tensor,
        lengths: torch.Tensor,
        target: Optional[torch.Tensor] = None,
    ):

        encoder_outputs = self.encoder(src, lengths)
        mask = get_mask_from_lengths(encoder_outputs, lengths)
        outputs, alignments = self.decoder(encoder_outputs, target, mask)

        output = {"diacritics": outputs, "attention": alignments}

        return output


class Encoder(nn.Module):
    def __init__(
        self,
        inp_vocab_size: int,
        embedding_dim: int = 512,
        layers_units: List[int] = [256, 256, 256],
        use_batch_norm: bool = False,
    ):
        super().__init__()
        self.embedding = nn.Embedding(inp_vocab_size, embedding_dim)

        layers_units = [embedding_dim // 2] + layers_units

        layers = []

        for i in range(1, len(layers_units)):
            layers.append(
                nn.LSTM(
                    layers_units[i - 1] * 2,
                    layers_units[i],
                    bidirectional=True,
                    batch_first=True,
                )
            )
            if use_batch_norm:
                layers.append(nn.BatchNorm1d(layers_units[i] * 2))

        self.layers = nn.ModuleList(layers)
        self.layers_units = layers_units
        self.use_batch_norm = use_batch_norm

    def forward(self, inputs: torch.Tensor, inputs_lengths: torch.Tensor):

        outputs = self.embedding(inputs)

        # embedded_inputs = [batch_size, src_len, embedding_dim]

        for i, layer in enumerate(self.layers):
            if isinstance(layer, nn.BatchNorm1d):
                outputs = layer(outputs.permute(0, 2, 1))
                outputs = outputs.permute(0, 2, 1)
                continue
            if i > 0:
                outputs, (hn, cn) = layer(outputs, (hn, cn))
            else:
                outputs, (hn, cn) = layer(outputs)

        return outputs

class Decoder(nn.Module):
    """A seq2seq decoder that decode a diacritic at a time ,
    Args:
    encoder_dim (int): the encoder output dim
    decoder_units (int): the number of neurons for each decoder layer
    decoder_layers (int): number of decoder layers
    """

    def __init__(
        self,
        trg_vocab_size: int,
        start_symbol_id: int,
        encoder_dim: int = 256,
        embedding_dim: int = 256,
        decoder_units: int = 256,
        decoder_layers: int = 2,
        attention_units: int = 256,
        attention_type: AttentionType = AttentionType.LocationSensitive,
        is_attention_accumulative: bool = False,
        prenet_depth: List[int] = [256, 128],
        use_prenet: bool = True,
        teacher_forcing_probability: float = 0.0,
    ):
        super().__init__()

        self.output_dim: int = trg_vocab_size
        self.start_symbol_id = start_symbol_id
        self.attention_units = attention_units
        self.decoder_units = decoder_units
        self.encoder_dim = encoder_dim
        self.use_prenet = use_prenet
        self.teacher_forcing_probability = teacher_forcing_probability
        self.is_attention_accumulative = is_attention_accumulative
        self.embbeding = nn.Embedding(trg_vocab_size, embedding_dim, padding_idx=0)
        attention_in = embedding_dim
        if use_prenet:
            self.prenet = Prenet(embedding_dim, prenet_depth)
            attention_in = prenet_depth[-1]

        self.attention_layer = nn.GRUCell(encoder_dim + attention_in, attention_units)
        self.attention_wrapper = AttentionWrapper(attention_type, attention_units)
        self.keys_layer = nn.Linear(encoder_dim, attention_units, bias=False)
        self.project_to_decoder_in = nn.Linear(
            attention_units + encoder_dim,
            decoder_units,
        )

        self.decoder_rnns = nn.ModuleList(
            [nn.GRUCell(decoder_units, decoder_units) for _ in range(decoder_layers)]
        )

        self.diacritics_layer = nn.Linear(decoder_units, trg_vocab_size)
        self.device = "cuda"

    def decode(
        self,
        diacritic: torch.Tensor,
    ):
        """
        Decode one time-step
        Args:
        diacritic (Tensor): (batch_size, 1)
        Returns:
        """

        diacritic = self.embbeding(diacritic)
        if self.use_prenet:
            prenet_out = self.prenet(diacritic)
        else:
            prenet_out = diacritic

        cell_input = torch.cat((prenet_out, self.prev_attention), -1)

        self.attention_hidden = self.attention_layer(cell_input, self.attention_hidden)
        output = self.attention_hidden

        # The queries are the hidden state of the RNN layer
        attention, alignment = self.attention_wrapper(
            query=self.attention_hidden,
            values=self.encoder_outputs,
            keys=self.keys,
            mask=self.mask,
            prev_alignment=self.prev_alignment,
        )

        decoder_input = torch.cat((output, attention), -1)

        decoder_input = self.project_to_decoder_in(decoder_input)

        for idx in range(len(self.decoder_rnns)):
            self.decoder_hiddens[idx] = self.decoder_rnns[idx](
                decoder_input, self.decoder_hiddens[idx]
            )
            decoder_input = self.decoder_hiddens[idx] + decoder_input

        output = decoder_input

        output = self.diacritics_layer(output)

        if self.is_attention_accumulative:
            self.prev_alignment = self.prev_alignment + alignment
        else:
            self.prev_alignment = alignment

        self.prev_attention = attention

        return output, alignment

    def inference(self):
        """Generate diacritics one at a time"""
        batch_size = self.encoder_outputs.size(0)
        trg_len = self.encoder_outputs.size(1)
        diacritic = (
            torch.full((batch_size,), self.start_symbol_id).to(self.device).long()
        )
        outputs, alignments = [], []
        self.initialize()

        for _ in range(trg_len):
            output, alignment = self.decode(diacritic=diacritic)

            outputs.append(output)
            alignments.append(alignment)
            diacritic = torch.max(output, 1).indices

        alignments = torch.stack(alignments).transpose(0, 1)
        outputs = torch.stack(outputs).transpose(0, 1).contiguous()
        return outputs, alignments

    def forward(
        self,
        encoder_outputs: torch.Tensor,
        diacritics: Optional[torch.Tensor] = None,
        input_mask: Optional[torch.Tensor] = None,
    ):
        """calculate  forward propagation
        Args:
        encoder_outputs (Tensor): the output of the encoder
        (batch_size, Tx, encoder_units * 2)
        diacritics(Tensor): target sequence
        input_mask (Tensor):  the inputs mask (batch_size, Tx)
        """
        self.mask = input_mask
        self.encoder_outputs = encoder_outputs
        self.keys = self.keys_layer(encoder_outputs)

        if diacritics is None:
            return self.inference()

        batch_size = diacritics.size(0)
        trg_len = diacritics.size(1)

        # Init decoder states
        outputs = []
        alignments = []

        self.initialize()

        diacritic = (
            torch.full((batch_size,), self.start_symbol_id).to(self.device).long()
        )

        for time in range(trg_len):
            output, alignment = self.decode(diacritic=diacritic)
            outputs += [output]
            alignments += [alignment]
            #if random.random() > self.teacher_forcing_probability:
            diacritic = diacritics[:, time]  # use training input
            #else:
                #diacritic = torch.max(output, 1).indices  # use last output

        alignments = torch.stack(alignments).transpose(0, 1)
        outputs = torch.stack(outputs).transpose(0, 1).contiguous()

        return outputs, alignments

    def initialize(self):
        """Initialize the first step variables"""
        batch_size = self.encoder_outputs.size(0)
        src_len = self.encoder_outputs.size(1)
        self.attention_hidden = Variable(
            torch.zeros(batch_size, self.attention_units)
        ).to(self.device)
        self.decoder_hiddens = [
            Variable(torch.zeros(batch_size, self.decoder_units)).to(self.device)
            for _ in range(len(self.decoder_rnns))
        ]
        self.prev_attention = Variable(torch.zeros(batch_size, self.encoder_dim)).to(
            self.device
        )
        self.prev_alignment = Variable(torch.zeros(batch_size, src_len)).to(self.device)