File size: 6,293 Bytes
5112867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import Optional

import torch
from torch import nn
import torch.nn.functional as F

from poetry_diacritizer.options import AttentionType


class BahdanauAttention(nn.Module):
    def __init__(self, dim):
        super(BahdanauAttention, self).__init__()
        self.query_layer = nn.Linear(dim, dim, bias=False)
        self.tanh = nn.Tanh()
        self.v = nn.Linear(dim, 1, bias=False)

    def forward(self, query: torch.Tensor, keys: torch.Tensor):
        """
        Args:
            query: (B, 1, dim) or (batch, dim)
            processed_memory: (batch, max_time, dim)
        """
        if query.dim() == 2:
            # insert time-axis for broadcasting
            query = query.unsqueeze(1)
        # (batch, 1, dim)
        query = self.query_layer(query)

        # (batch, max_time, 1)
        alignment = self.v(self.tanh(query + keys))

        # (batch, max_time)
        return alignment.squeeze(-1)


class LocationSensitive(nn.Module):
    def __init__(self, dim):
        super(LocationSensitive, self).__init__()
        self.query_layer = nn.Linear(dim, dim, bias=False)
        self.v = nn.Linear(dim, 1, bias=True)
        self.location_layer = nn.Linear(32, dim, bias=False)
        padding = int((31 - 1) / 2)
        self.location_conv = torch.nn.Conv1d(
            1, 32, kernel_size=31, stride=1, padding=padding, dilation=1, bias=False
        )

        self.score_mask_value = -float("inf")

    def forward(
        self,
        query: torch.Tensor,
        keys: torch.Tensor,
        prev_alignments: torch.Tensor,
    ):
        # keys = keys.permute(1,0,2)
        query = self.query_layer(query)
        if query.dim() == 2:
            # insert time-axis for broadcasting
            query = query.unsqueeze(1)
            # -> [batch_size, 1, attention_dim]

        alignments = prev_alignments.unsqueeze(1)

        # location features [batch_size, max_time, filters]
        filters = self.location_conv(alignments)
        location_features = self.location_layer(filters.transpose(1, 2))

        alignments = self.v(torch.tanh(query + location_features + keys))
        return alignments.squeeze(-1)


class AttentionWrapper(nn.Module):
    def __init__(
        self,
        attention_type: AttentionType = AttentionType.LocationSensitive,
        attention_units: int = 256,
        score_mask_value=-float("inf"),
    ):
        super().__init__()
        self.score_mask_value = score_mask_value
        self.attention_type = attention_type

        if attention_type == AttentionType.LocationSensitive:
            self.attention_mechanism = LocationSensitive(attention_units)
        elif attention_type == AttentionType.Content_Based:
            self.attention_mechanism = BahdanauAttention(attention_units)
        else:
            raise Exception("The attention type is not known")

    def forward(
        self,
        query: torch.Tensor,
        keys: torch.Tensor,
        values: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        prev_alignment: Optional[torch.Tensor] = None,
    ):

        # Alignment
        # (batch, max_time)
        if self.attention_type == AttentionType.Content_Based:
            alignment = self.attention_mechanism(query, keys)
        else:
            alignment = self.attention_mechanism(query, keys, prev_alignment)

        # Attention context vector

        if mask is not None:
            alignment.data.masked_fill_(mask, self.score_mask_value)

        alignment = F.softmax(alignment, dim=1)
        attention = torch.bmm(alignment.unsqueeze(1), values)
        attention = attention.squeeze(1)

        return attention, alignment


class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, hid_dim: int, n_heads: int, dropout: float = 0.0):
        super().__init__()

        assert hid_dim % n_heads == 0

        self.hid_dim = hid_dim
        self.n_heads = n_heads
        self.head_dim = hid_dim // n_heads

        self.fc_q = nn.Linear(hid_dim, hid_dim)
        self.fc_k = nn.Linear(hid_dim, hid_dim)
        self.fc_v = nn.Linear(hid_dim, hid_dim)

        self.fc_o = nn.Linear(hid_dim * 2, hid_dim)

        if dropout != 0.0:
            self.dropout = nn.Dropout(dropout)

        self.use_dropout = dropout != 0.0

        device = next(self.parameters()).device

        self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)

    def forward(self, query, key, value, mask=None):

        batch_size = query.shape[0]

        # query = [batch size, query len, hid dim]
        # key = [batch size, key len, hid dim]
        # value = [batch size, value len, hid dim]

        Q = self.fc_q(query)
        K = self.fc_k(key)
        V = self.fc_v(value)

        # Q = [batch size, query len, hid dim]
        # K = [batch size, key len, hid dim]
        # V = [batch size, value len, hid dim]

        Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
        K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
        V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)

        # Q = [batch size, n heads, query len, head dim]
        # K = [batch size, n heads, key len, head dim]
        # V = [batch size, n heads, value len, head dim]

        energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale

        # energy = [batch size, n heads, query len, key len]

        if mask is not None:
            energy = energy.masked_fill(mask == 0, -float("inf"))

        attention = torch.softmax(energy, dim=-1)

        # attention = [batch size, n heads, query len, key len]

        if self.use_dropout:
            context_vector = torch.matmul(self.dropout(attention), V)
        else:
            context_vector = torch.matmul(attention, V)

        # x = [batch size, n heads, query len, head dim]

        context_vector = context_vector.permute(0, 2, 1, 3).contiguous()

        # x = [batch size, query len, n heads, head dim]

        context_vector = context_vector.view(batch_size, -1, self.hid_dim)

        x = torch.cat((query, context_vector), dim=-1)

        # x = [batch size, query len, hid dim * 2]

        x = self.fc_o(x)

        # x = [batch size, query len, hid dim]

        return x, attention