|
import os |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
import gradio as gr |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from Ashaar.utils import get_output_df, get_highlighted_patterns_html |
|
from Ashaar.bait_analysis import BaitAnalysis |
|
from langs import * |
|
import sys |
|
import json |
|
import argparse |
|
|
|
arg_parser = argparse.ArgumentParser() |
|
arg_parser.add_argument('--lang', type = str, default = 'ar') |
|
args = arg_parser.parse_args() |
|
lang = args.lang |
|
|
|
if lang == 'ar': |
|
TITLE = TITLE_ar |
|
DESCRIPTION = DESCRIPTION_ar |
|
textbox_trg_text = textbox_trg_text_ar |
|
textbox_inp_text = textbox_inp_text_ar |
|
btn_trg_text = btn_trg_text_ar |
|
btn_inp_text = btn_inp_text_ar |
|
css = """ #textbox{ direction: RTL;}""" |
|
|
|
else: |
|
TITLE = TITLE_en |
|
DESCRIPTION = DESCRIPTION_en |
|
textbox_trg_text = textbox_trg_text_en |
|
textbox_inp_text = textbox_inp_text_en |
|
btn_trg_text = btn_trg_text_en |
|
btn_inp_text = btn_inp_text_en |
|
css = "" |
|
|
|
gpt_tokenizer = AutoTokenizer.from_pretrained('arbml/ashaar_tokenizer') |
|
model = AutoModelForCausalLM.from_pretrained('arbml/Ashaar_model') |
|
|
|
theme_to_token = json.load(open("extra/theme_tokens.json", "r")) |
|
token_to_theme = {t:m for m,t in theme_to_token.items()} |
|
meter_to_token = json.load(open("extra/meter_tokens.json", "r")) |
|
token_to_meter = {t:m for m,t in meter_to_token.items()} |
|
|
|
analysis = BaitAnalysis() |
|
meter, theme, qafiyah = "", "", "" |
|
|
|
def analyze(poem): |
|
global meter,theme,qafiyah |
|
shatrs = poem.split("\n") |
|
baits = [' # '.join(shatrs[2*i:2*i+2]) for i in range(len(shatrs)//2)] |
|
output = analysis.analyze(baits,override_tashkeel=True) |
|
meter = output['meter'] |
|
qafiyah = output['qafiyah'][0] |
|
theme = output['theme'][-1] |
|
|
|
df = get_output_df(output) |
|
return get_highlighted_patterns_html(df) |
|
|
|
def generate(inputs, top_p = 3): |
|
baits = inputs.split('\n') |
|
if len(baits) % 2 !=0: |
|
baits = baits[:-1] |
|
poem = ' '.join(['<|bsep|> '+baits[i]+' <|vsep|> '+baits[i+1]+' </|bsep|>' for i in range(0, len(baits), 2)]) |
|
prompt = f""" |
|
{meter_to_token[meter]} {qafiyah} {theme_to_token[theme]} |
|
<|psep|> |
|
{poem} |
|
""".strip() |
|
print(prompt) |
|
encoded_input = gpt_tokenizer(prompt, return_tensors='pt') |
|
output = model.generate(**encoded_input, max_length = 512, top_p = 3, do_sample=True) |
|
|
|
result = "" |
|
prev_token = "" |
|
line_cnts = 0 |
|
for i, beam in enumerate(output[:, len(encoded_input.input_ids[0]):]): |
|
if line_cnts >= 10: |
|
break |
|
for token in beam: |
|
if line_cnts >= 10: |
|
break |
|
decoded = gpt_tokenizer.decode(token) |
|
if 'meter' in decoded or 'theme' in decoded: |
|
break |
|
if decoded in ["<|vsep|>", "</|bsep|>"]: |
|
result += "\n" |
|
line_cnts+=1 |
|
elif decoded in ['<|bsep|>', '<|psep|>', '</|psep|>']: |
|
pass |
|
else: |
|
result += decoded |
|
prev_token = decoded |
|
else: |
|
break |
|
|
|
return result |
|
examples = [ |
|
[ |
|
"""ุงูููุจ ุฃุนูู
ูุง ุนุฐูู ุจุฏุงุฆู |
|
ูุฃุญู ู
ูู ุจุฌููู ูุจู
ุงุฆู""" |
|
], |
|
[ |
|
"""ุฑู
ุชู ุงููุคุงุฏู ู
ููุญุฉ ุนุฐุฑุงุกู |
|
ุจุณูุงู
ู ูุญุธู ู
ุง ููููู ุฏูุงุกู""" |
|
], |
|
[ |
|
"""ุฃุฐูููู ุงูุญูุฑูุตู ูุงูุทููู
ูุนู ุงูุฑูููุงุจูุง |
|
ูููุฏ ููุนูู ุงูููุฑูู
ูุ ุฅุฐุง ุงุณุชูุฑูุงุจูุง""" |
|
] |
|
] |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.HTML(TITLE) |
|
gr.HTML(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox_output = gr.Textbox(lines=10, label=textbox_trg_text, elem_id="textbox") |
|
with gr.Column(): |
|
inputs = gr.Textbox(lines=10, label=textbox_inp_text, elem_id="textbox") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
trg_btn = gr.Button(btn_trg_text) |
|
with gr.Column(): |
|
inp_btn = gr.Button(btn_inp_text) |
|
|
|
with gr.Row(): |
|
html_output = gr.HTML() |
|
|
|
if lang == 'en': |
|
gr.Examples(examples, textbox_output) |
|
inp_btn.click(generate, inputs = textbox_output, outputs=inputs) |
|
trg_btn.click(analyze, inputs = textbox_output, outputs=html_output) |
|
else: |
|
gr.Examples(examples, inputs) |
|
trg_btn.click(generate, inputs = inputs, outputs=textbox_output) |
|
inp_btn.click(analyze, inputs = inputs, outputs=html_output) |
|
|
|
|
|
demo.launch() |