|
import torch |
|
from torch import nn |
|
from typing import Any |
|
|
|
|
|
class BatchNormConv1d(nn.Module): |
|
""" |
|
A nn.Conv1d followed by an optional activation function, and nn.BatchNorm1d |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
kernel_size: int, |
|
stride: int, |
|
padding: int, |
|
activation: Any = None, |
|
): |
|
super().__init__() |
|
self.conv1d = nn.Conv1d( |
|
in_dim, |
|
out_dim, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
bias=False, |
|
) |
|
self.bn = nn.BatchNorm1d(out_dim) |
|
self.activation = activation |
|
|
|
def forward(self, x: Any): |
|
x = self.conv1d(x) |
|
if self.activation is not None: |
|
x = self.activation(x) |
|
return self.bn(x) |
|
|
|
|
|
class LinearNorm(torch.nn.Module): |
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): |
|
super().__init__() |
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) |
|
|
|
torch.nn.init.xavier_uniform_( |
|
self.linear_layer.weight, |
|
gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
def forward(self, x): |
|
return self.linear_layer(x) |
|
|
|
|
|
class ConvNorm(torch.nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, |
|
padding=None, dilation=1, bias=True, w_init_gain='linear'): |
|
super().__init__() |
|
if padding is None: |
|
assert(kernel_size % 2 == 1) |
|
padding = int(dilation * (kernel_size - 1) / 2) |
|
|
|
self.conv = torch.nn.Conv1d(in_channels, out_channels, |
|
kernel_size=kernel_size, stride=stride, |
|
padding=padding, dilation=dilation, |
|
bias=bias) |
|
|
|
torch.nn.init.xavier_uniform_( |
|
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
def forward(self, signal): |
|
conv_signal = self.conv(signal) |
|
return conv_signal |
|
|